Как работает гидравлическое сцепление

Оглавление

Принцип работы сцепления в автомобиле

Сцепление играет важную роль в системе трансмиссии автотранспорта. Его функция предполагает включение/выключение крутящего момента. Данный узел обеспечивает плавность соединения вращающегося маховика силового агрегата с первичным валом коробки передач при начале движения автомобиля, а также в процессе переключения скоростей. Еще одна задача рассматриваемого механизма состоит в защите автомобильной трансмиссии от серьезных перегрузок, возникающих в случае экстренного торможения.

Современные модели автомобилей комплектуются несколькими конструктивными вариантами сцепления. К примеру, в зависимости от количества дисков различают одно- и многодисковые системы (первый вариант встречается чаще).

Еще один важный параметр классификации сцеплений автомобилей – это рабочая среда привода. По этому признаку механизмы делятся на «сухие» и «мокрые». В современных моделях автопроизводители чаще используют «сухие» приводы, так как для их работы не нужно предусматривать наличие масляной ванны.

На рисунке представлены основные элементы сцепления автомобилей:

1. Направляющая, по которой движется выжимной подшипник.

2. Первичный вал коробки передач.

3. Скоба регулировки свободного хода.

4-5. Вилка механизма сцепления.

6. Корзина.

7. Ведомый диск.

8. Маховик силового агрегата.

9. Педаль.

В зависимости от вида привода различают гидравлическое, механическое, электрическое или комбинированное сцепление. Кроме того, различные конструкции могут отличаться вариантом нажатия на прижимной диск и могут иметь круговое расположение пружин либо центральную диафрагму.

Основными конструктивными элементами механизма, обеспечивающего передачу вращательного ускорения от силового агрегата автотранспортных средств, выступают: «ведомый» и нажимной диск сцепления, выжимной подшипник, приводная вилка, приводная система и педаль (выключатель соединения с маховиком силового агрегата).

Принцип работы сцепления с одним диском заключается в плавном переключении скоростей, которое происходит в результате плотного прижимании маховика, накладок ведомого диска и прижимных элементов «корзины». При включенном механизме, прижимающийся диск «корзины» сцепления давит на выжимные пружины, что обеспечивает плотное прилегание к ведомому диску, который в результате такого воздействия прижимается к маховику двигателя.

Так как первичный вал КПП заходит в муфту со лицами, то и он получает вращательное ускорение от диска. При надавливании на педаль сцепления в салоне авто, привод сцепления обеспечивает давление выжимного подшипника на пружины, что способствует отведению рабочей поверхности «корзины» от диска, поэтому вал коробки передач перестает вращаться даже при работающем моторе.

В двухдисковой конструкции механизма, передающего вращательное движение силового агрегата автомобилей, присутствует 2 диска и, соответственно у корзины есть 2-е рабочие поверхности. Между дисками такого механизма присутствуют ограничительные втулки и детали, обеспечивающие синхронное нажатие. Процесс разъединения маховика мотора и первичного вала КПП у однодисковых и двухдисковых сцеплений одинаков.

Модели авто с АКПП чаще всего комплектуются влажным многодисковым механизмом сцепления, но у некоторых производителей можно встретить и комбинацию с сухим сцеплением. 

Активаторы для АКПП могут быть электрическими или гидравлическими. В первом случае используется шаговый электродвигатель, а во втором двигатель в виде гидроцилиндра. Управляет работой электрического сервопривода коробки «автомат» электроника, а гидравлического активатора гидрораспределитель.

Роботизированные КПП комплектуются двумя видами сцепления, которые работают попеременно. Первый механизм обеспечивает включение передач, а второй, при этом, ожидает команду на переключение следующей передачи.

Вентилятор и гидромуфта автомобиля Камаз

Вентилятор осевого типа, пятилопастный, создает дополнительный поток воздуха через сердцевину радиатора систе­мы охлаждения.

Он закреплен на ступи­це 15 ведомого вала гидромуф­ты и размещен в кожухе

При вращении вентилятора кожух формирует поток воз­духа, направленный через сердцевину ра­диатора, и тем самым повышает эффектив­ность охлаждения.

Привод вентилятора гидравлический, он состоит из гидромуфты и выключателя режима ее работы.

Гидромуфта привода вентилятора обеспечивает передачу крутя­щего момента от коленчатого вала двига­теля к вентилятору и снижение динамиче­ских нагрузок, возникающих при резком изменении частоты вращения коленчатого вала.

Выключатель обеспечивает автома­тическое включение или выключение вен­тилятора.

Гидромуфта устанавливается в пе­редней части двигателя соосно с коленча­тым валом в полости, образованной перед­ней крышкой 1 блока и корпу­сом 2 подшипника.

Ведущий вал в сборе с кожухом 3, ведущее колесо 10, вал 12 шкива и шкив 11 генератора, соединенные болтами и вращающиеся в шарикоподшип­никах 8, 19, составляют ведущую часть гид­ромуфты. Она приводится во вращение от коленчатого вала двигателя посредством шлицевого вала 6.

Ведомое колесо 9 в сбо­ре с валом 16 и закрепленной на нем сту­пицей 15 вентилятора, вращающиеся в ша­рикоподшипниках 4, 13, составляют ведо­мую часть гидромуфты.

Гидромуфта уплот­нена резиновыми манжетами 17, 20.На внутренних тороидальных поверх­ностях ведущего и ведомого колес имеются радиальные лопатки, отлитые вместе с ко­лесами. На ведущем колесе их 33, на ведо­мом — 32.

Межлопаточное пространство колес образует рабочую полость гидро­муфты.

Передача крутящего момента с ведуще­го колеса 10 гидромуфты на ведомое коле­со 9 происходит при заполнении рабочей полости маслом.

При работающем двигате­ле масло, поступающее из нагнетающей секции масляного насоса через канал вы­ключателя, попадает на лопатки вращаю­щегося ведущего колеса, увлекается им, приобретая при этом кинетическую энер­гию.

В полости колес устанавливается внутренняя циркуляция масла (показано стрелками).

Частицы масла, ударяясь о ло­патки ведомого колеса, отдают ему энер­гию, обеспечивая вращение ведомых дета­лей и вентилятора.

Частота вращения ве­домого колеса зависит от количества мас­ла, поступающего в полость гидромуфты.

Резкое изменение частоты вращения ко­ленчатого вала двигателя сопровождается проскальзыванием ведущего колеса гидромуфты относительно ведомого, что снижа­ет динамические нагрузки в приводе.

Выключатель (рис.2. ), который управляет работой гидромуфты привода вентилятора, установлен в передней части двигателя на патрубке так, что его термо­силовой датчик 7 находится в потоке жид­кости, подаваемой от насоса к правому ря­ду цилиндров.

Выключатель имеет три фиксированных положения, определяющих режим работы вентилятора.

Автоматический режим — рычаг уста­новлен в положение А . В случае повышения температуры охлаждающей жидкости, омывающей термосиловой дат­чик, активная масса, нахо­дящаяся в его баллоне, начинает плавить­ся и, увеличиваясь в объеме, перемещает шток датчика и шарик 9.

При температуре жидкости 85. 90°С шарик 9 открывает масляный канал в корпусе 5.

Масло из главной магистрали двигателя по каналам в корпусе выключателя, блоке и его перед­ней крышке, трубке 5 (см. рис.3) и кана­лам в ведущем валу поступает в рабочую полость гидромуфты; при этом крутящий момент от коленчатого вала передается крыльчатке вентилятора.

При температуре охлаждающей жид­кости ниже 85°С шарик под действием воз­вратной пружины перекрывает масляный канал в корпусе и подача масла в гидро­муфту прекращается. При этом находя­щееся в гидромуфте масло через отверстие в кожухе 3 сливается в картер двигателя и вентилятор отключается.

Вентилятор отключен — рычаг уста­новлен в положение О (рис.3), Масло в гидромуфту не подается.

Крыльчатка может вращаться с небольшой частотой под действием сил трения, возникающих при вращении в подшипниках и манжетах гидромуфты.

Вентилятор включен постоянно — рычаг установлен в положение П.

В гидро­муфту постоянно подается масло независи­мо от температуры охлаждающей жидкос­ти, вентилятор вращается постоянно с час­тотой, приблизительно равной частоте вра­щения коленчатого вала.

Основной режим работы гидромуфты — автоматический.

При отказе выключателя гидромуфты в автоматическом режиме (характеризуется перегревом двигателя) ее следует включить на постоянный режим (установить рычаг выключателя в поло­жение А) и при первой возможности устра­нить неисправность выключателя.

Устройство гидравлического привода

При таком конструктивном решении усилие передаётся уже другим способом. Схема гидравлического привода не предполагает наличие троса, реализация механизма с данным типом управления немного сложнее и трос заменяет гидравлическая магистраль. Усилие передаётся посредством несжимаемой жидкости, проходящей по магистрали и поскольку гидропривод аналогичен тому, что применяется в тормозной системе, для работы используют ту же жидкость. Устройство сцепления с управлением с помощью гидравлического привода включает следующие элементы:

  • Педаль.
  • Главный цилиндр, состоящий из поршня с толкателем, резервуара для жидкости и уплотнительных манжет.
  • Рабочий цилиндр имеет похожую конструкцию.
  • Магистраль, соединяющая цилиндры.
  • Бачок с жидкостью.
  • Дополнительно цилиндры оснащаются клапанами для отвода воздуха из системы.

Принцип работы достаточно простой и схож с механическим вариантом управления, отличие только в методе передачи усилия. Когда автомобилист жмёт на ножной рычаг в салоне автомашины, поршень главного цилиндра приводится в движение, жидкость сжимается и под давлением перемещается по трубопроводу в рабочий цилиндр, толкая поршень, что задействует вилку выключения сцепления.

Гидравлический привод может быть также оборудован демпфирующим устройством с целью гашения колебаний от взаимодействия выжимного подшипника с деталями выключения сцепления. Пневматические или гидравлические усилители часто используются для грузового транспорта.

Поскольку механизм с гидравлическим приводом является более совершенным и сложным устройством, передающим усилие на дальнее расстояние с высоким КПД, стоимость его выше, при этом он отличается плавностью включения сцепления, что обусловлено сопротивлением перемещению жидкости в элементах конструкции. Среди преимуществ гидропривода также устойчивость к износу деталей, но и ремонт сложнее, чем в случае с механическим устройством.

Механический и гидравлический приводы наделены своими особенностями функционирования, плюсами и минусами применения, при этом устройства этих типов обеспечивают комфорт управления транспортным средством. В легковых машинах жёсткость диафрагменной пружины нажимного диска небольшая, так что водителю не нужно прилагать больших усилий, но на грузовиках узел габаритнее, и чтобы привести в действие корзину, от водителя потребуется большее усилие, поэтому в конструкцию вводят усилители.

По окончанию процедуры, педаль сцепления должна работать нормально, с поршнями также не должно быть проблем

Это крайне важно, так как в некоторых случаях может произойти разбухание разнообразных резиновых элементов, что очень опасно, потому что приводит к отказу всей системы

Когда требуется прокачка сцепления

Работа системы сцепления основана на законах физики — свойствах гидравлической/тормозной жидкости сжиматься/разжиматься под воздействием нагрузки. Если в систему попал воздух, её свойства меняются. Как результат: гидравлика перестает реагировать на давление или реагирует с запозданием, что приводит к рывкам и толчкам при нажатии на педаль.

Признаки “завоздушивания” системы

Если появились следующие симптомы, пора менять гидравлическую жидкость:

  • педаль выжимается слишком легко, при этом передача не переключается;
  • педаль “ходит” нормально, но передача включается с вибрацией или запозданием;
  • педаль сцепления «залипает» в пол, медленно возвращаясь в верхнее положение.

Даже одного из этих признаков достаточно, чтобы проверить систему.

«Проваливание» может быть вызвано и поломкой возвратной пружины.

Перед прокачкой сцепления выясните, что не пружинный механизм — причина неисправности.

В каких случаях прокачивается гидропривод сцепления

Прокачка систем сцепления и торможения обязательно проводится, если:

  1. используемая жидкость уже отработала своё. Изменение физико-механических свойств со временем — это норма. Рекомендованный срок применения для гидравлики — 1-2 года (как правило, срок указывается на ёмкости).

    Жидкость теряет свои свойства, даже если хранилась в герметичной таре.

  2. система сцепления или тормоза ремонтируется. Когда меняются манжеты, уплотнители, сальники, устраняется течь, происходит разгерметизация. Итог: вытекание рабочей жидкости и ее завоздушивание. Требуется замена.

    Ускорить новую прокачку легко, если слабо затянуть крепления агрегатов механизмов сцепления. Через микроотверстия свободно просачивается воздух.

  3. элементы систем сцепления/торможения сильно изношены.

    В случае износа деталей только прокачки недостаточно, ведь причина завоздушивания не исчезает. Чтобы устранить проблему, нужно сначала ремонтировать или менять функциональные элементы, а затем менять рабочую жидкость.

Этапы прокачки системы

После регулировки прокачка сцепления выполняется в несколько этапов:

  1. в систему накачивается давление. Для этого педаль выжимается 3 — 4 раза резко и до упора, с интервалом в 2 секунды. Таким образом достигается её максимальный ход.
  2. педаль фиксируется в зажатом положении.
  3. жидкость сливается за счёт поворота штуцера цилиндра (с надетой трубкой) на полоборота. Вместе с техжидкостью “выдавливается” воздух.

О количестве воздуха судят по числу пузырьков, которые образуются в емкости. По мере освобождения системы от воздуха педаль опускается.

4. Когда педаль проваливается в пол, штуцер быстро закрывается. До закрытия клапана отпускать педаль нельзя.

Процедуру прокачки лучше повторить 3-4 раза. Когда система очищена от воздуха, пузырьков в сливном резервуаре не остаётся.

Чтобы работа не оказалась безрезультатной, при прокачке важно следить за уровнем рабочей жидкости в расширительном бачке. Он не должен опускаться ниже 3,5 см.. 5

Закрутите штуцер, убедитесь в герметичности системы и снимите шланг.

5. Закрутите штуцер, убедитесь в герметичности системы и снимите шланг.

Сливной штуцер

Принцип работы приводов сцепления

Принцип работы привода сцепления автомобиля, с которым усилие от педали передается на механизм переключения, может быть механическим, гидравлическим или электрическим.

Механический привод сцепления конструктивно самый простой: он представляет собой стальной трос, связывающий тягу педали и рычаг включения сцепления. На нем обычно находится резьбовое соединение, которым можно регулировать длину троса. Недостаток такого привода – большее усилие при нажатии на педаль.

Электрический привод отличается от механического тем, что трос выключения сцепления приводится в движение от электромотора, который включается при нажатии на педаль. В остальном его устройство мало чем отличается от механического привода.

Как правильно пользоваться сцеплением на автомобиле

На практике работа со сцеплением автомобиля в основном выражается в выработке навыка правильного трогания с места, особенно на подъеме. При оживленном городском движении умелая работа с педалью позволит автомобилю двигаться плавно и не заглохнуть при резком торможении.

При начале движения, нужно, отпуская педаль сцепления, уловить момент соприкосновения дисков, уравновесить скорости их вращения, и дальше плавно отпустить педаль. Ориентир – число оборотов двигателя. Если двигатель работает равномерно, значит, сцепление включается правильно.

Сцеплением следует пользоваться лишь при старте, переключении передач и при остановке автомобиля. Выполнение этого требования продлит срок его службы.

  • Резкое или, наоборот, замедленное отпускание педали сцепления при старте приводит к ускоренному износу рабочей поверхности дисков.
  • Остановка на светофоре при нажатой педали и включенной передаче не лучшим образом скажется на работе нажимных пружин, подшипника и вилки выключения.

Две главные неисправности механизма сцепления – это недостаточно плотное соприкосновение дисков и недостаточно полное их разъединение.

  1. В первом случае сцепление пробуксовывает, а у автомобиля будет наблюдаться плохая динамика разгона. Обычно это является результатом износа ведомого диска, его фрикционных накладок.
  2. Во втором случае в результате неполного разъединения дисков при включенной передаче и нажатой педали автомобиль пытается поехать.

Если эти неисправности не устраняются регулировкой привода, то необходим ремонт самого механизма в стационарных условиях.

Выжимной подшипник сцепления: принцип действия, симптомы неисправности

Сегодня наиболее распространены системы сцепления с двумя дисками – ведущим, жестко сцепляемым с коленчатым валом и ведомым, передающим крутящий момент на КПП. Для переключения передач или перевода автомобиля на холостой ход требуется разъединение дисков сцепления, которое осуществляется с помощью выжимного подшипника, оттягивающего ведомый диск от ведущего.

Местоположение выжимного подшипника

Это важный элемент системы сцепления, и одновременно одна из наиболее уязвимых деталей. Выжимной подшипник сцепления в процессе движения автомобиля находится в состоянии покоя, включаясь в работу только при переключении передач. Поломка такой мелкой запчасти гарантирует невозможность дальнейшей эксплуатации авто, так что менять подшипник нужно сразу же при появлении явных признаков его неисправности.

Стоит деталь от 300 до 1500 и более рублей в зависимости от производителя и модели автомобиля. Замена подшипника на СТО обойдется в 3000-7000 рублей, поэтому при наличии желания, возможности и нормального комплекта автоинструментов есть смысл сделать это самостоятельно и хорошо сэкономить.

Особенности выбора минерального масла. Можно ли использовать его в гидроприводе сцепления

Минеральное масло должно приспособиться к тяжелым условиям функционирования в передачах, ведь температурный режим может достигать +150 С. К маслам, соответственно, предъявлены жесткие требования, поскольку помимо выполнения функции смазки трущихся поверхностей они играют роль рабочего тела.

Так, минеральное масло должно обладать достаточным количеством эксплуатационных качеств:

  • высокая стабильность в течение полного эксплуатационного срока;
  • минеральное масло должно иметь интенсивную аэрацию;
  • высокие показатели образования пены;
  • минеральное масло должно характеризоваться присутствием в составе противокоррозионных присадок, обеспечивающих снижение действия коррозии;
  • оптимальный уровень вязкости и плотности, который должно иметь минеральное масло. Если уровень и КПД высокие, показатель вязкости – минимальный, если нужно обеспечить в области поверхностей трения пленку – требуется высокий показатель вязкости;
  • отсутствие качеств агрессивности в отношении деталей, используемых для уплотнения и по сравнению с другими элементами, работающими в системе.

Нередко на практике применяется специальное минеральное масло, которое изготовлено на базе веретенных компонентов с низким уровнем вязкости и присутствием присадок.

Виды, и конструктивные особенности

В конструкции сцепления авто применяется два вида выжимных подшипников:

Основные элементы выжимных подшипников — это шариковые или роликовые подшипники закрытого типа. Они используются как на механическом, так и гидравлическом типе изделия. В их конструкцию входит также корпус.

В механических элементах этот корпус предназначен для взаимосвязи с вилкой привода сцепления. Такие узлы могут иметь самую разную конструкцию (корпус представлен в виде втулки, вставляемой во внутреннюю обойму, или же он устанавливается на внешнее кольцо), но у всех корпусов присутствуют специальные выступы, на которые воздействует вилка. В целом, в механических подшипниках корпусы только для этого и предназначены.

Схема сцепления автомобиля ВАЗ — 2107 1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 — выжимной подшипник с муфтой; 5 — бачок гидропривода сцепления; 6 — шланг; 7 — главный цилиндр гидропривода выключения сцепления; 8 — сервопружина педали сцепления; 9 — возвратная пружина педали сцепления; 10 — ограничительный винт хода педали сцепления; 11 — педаль сцепления; 12 — трубопровод гидропривода выключения сцепления; 13 — шаровая опора вилки; 14 — вилка выключения сцепления; 15 — оттяжная пружина вилки выключения сцепления; 16 — шланг; 17 — рабочий цилиндр гидропривода выключения сцепления; 18 — штуцер прокачки сцепления

В гидравлических выжимных подшипниках конструкция корпуса сложнее, поскольку он выступает в роли гидроцилиндра. Суть работы у него такая – водитель, нажимая на педаль, создает давление жидкости в приводе сцепления. Эта жидкость поступает в корпус и выдавливает поршень гидроцилиндра с закрепленным на нем подшипником. Сам корпус в такой конструкции не перемещается вместе с упорным элементом, что дает возможность жестко фиксировать его болтами к корпусу сцепления.

Подшипник в конструкции узла используется для создания нажима с минимальным трением. При контакте с диафрагменной пружиной он вращаетсяс той же скорость, что и элементы сцепления, из-за чего трение между контактируемыми поверхностями отсутствует. Трение есть в самом подшипнике, но незначительное.

Привод выжимного подшипника бывает механический, гидравлический и комбинированный. В первом случае усилие от педали передается системой тяг или приводным тросом. Используется этот привод с механическими подшипниковыми узлами.

Гидравлический привод соответственно применяется на втором типе подшипников, поскольку жидкость у него является основным рабочим элементом (от ее давления срабатывает гидроцилиндр). Особенность комбинированного привода заключается в том, что жидкость действует не на подшипник, а на вилку, а та в свою очередь перемещает механический подшипник.

Ещё кое-что полезное для Вас:

Устройство основных элементов гидропривода

Управление сцеплением на ВАЗ 2107 осуществляется с помощью гидравлического привода, давление в котором создаётся с помощью подвесного педального механизма. Основными элементами гидропривода являются:

  • главный цилиндр сцепления (ГЦС);
  • трубопровод;
  • шланг;
  • рабочий цилиндр сцепления (РЦС).

Работоспособность привода зависит об объёма и технических характеристик эксплутационной жидкости, в качестве которой для ВАЗ 2107 обычно используется тормозная жидкость (ТЖ) ДОТ-3 или ДОТ-4. ДОТ — это обозначение системы требований к физико-химическим свойствам ТЖ, разработанной институтом департамента транспорта США (DOT — Department of Transportation). Выполнение этих требований является обязательным условием для производства и сертификации жидкости. В состав ТЖ входят гликоль, полиэфиры и присадки. Жидкости ДОТ-3 или ДОТ-4 имеют низкую цену и рекомендованы к использованию в тормозных системах барабанного типа и в гидравлических приводах сцепления.

Устройство и назначение главного цилиндра сцепления

ГЦС предназначен для создания давления рабочей жидкости за счёт перемещения поршня, соединённого с педалью сцепления. Он установлен в моторном отсеке чуть ниже педального механизма, крепится на двух шпильках и соединён с бачком для рабочей жидкости гибким рукавом. Устроен цилиндр следующим образом. В его корпусе есть полость, в которой размещены возвратная пружина, рабочий поршень, оснащённый двумя уплотнительными кольцами, и плавающий поршень. Внутренний диаметр ГЦС составляет 19,5+0,015–0,025 мм. На зеркальной поверхности цилиндра и наружных поверхностях поршней не допускается наличие ржавчины, царапин, сколов.

Замена главного цилиндра

Заменить ГЦС довольно просто. Для этого потребуется:

  • набор гаечных ключей и головок;
  • круглогубцы для снятия стопорного кольца;
  • длинная тонкая отвёртка со шлицем;
  • одноразовый шприц на 10–22 мл;
  • небольшая ёмкость для слива рабочей жидкости.

Работы выполняются в следующем порядке:

  1. Из гидравлического привода муфты сливается рабочая жидкость. Для этого можно использовать медицинский шприц или просто сдёрнуть рукав со штуцера ГЦС.

Разборка и сборка главного цилиндра

После аккуратного извлечения ГЦС из посадочного места можно приступить к его разборке. Это лучше делать на столе или верстаке с хорошим освещением в следующем порядке:

  1. Очистить наружные поверхности корпуса от загрязнений.
  2. Аккуратно снять защитный чехол из резины. Отвернуть штуцер шланга, идущего к бачку с рабочей жидкостью.

Сборка и установка собранного или нового ГЦС осуществляется в обратном порядке.

Видео: замена главного цилиндра сцепления ВАЗ 2101–07

РЦС обеспечивает перемещение толкателя за счёт давления ТЖ, создаваемого главным цилиндром. Цилиндр находится в труднодоступном месте на нижней части КПП и закреплён на картере муфты двумя болтами. Подобраться к нему удобнее всего снизу.

Гидротрансформатор

В начале будет проще понять принцип работы гидротрансформатора на примере гидромуфты. Гидромуфта по конструкции очень на него похожа, но не умеет изменять передаточное число, а только передает крутящий момент.

Гидромуфта состоит из двух колес с лопатками (как у вентилятора) которые вращаются друг напротив друга. Одно колесо, насосное, соединено с двигателем, второе колесо, турбинное, соединено с КПП. Оба колеса находятся в герметичном кожухе внутрь которого залито масло.

При вращении двигателем насосного колеса вязкое масло захватывается его лопатками, выбрасывается на лопатки турбинного колеса приводя его в движение. Таким образом кинетическая энергия от вращения вала двигателя передается валу КПП хотя при этом отсутствует жесткая связь между ними.

Наиболее наглядно демонстрирует этот механизм опыт с двумя вентиляторами расположенными друг напротив друга. Один из них выключен, второй включен. Воздух ударяясь о неподвижные лопатки выключенного вентилятора заставляет их вращаться.

Однако в замкнутом пространстве в котором работает гидромуфта обратный поток масла идущий от турбинного колеса попадает на лопатки насосного колеса в обратном направлении и замедляет его ход. Чтобы уменьшить этот эффект, на пути движения масла устанавливают третье колесо — реакторное. Это колесо может свободно вращаться или блокироваться на валу. Таким образом получается гидротрансформатор.

Схема гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода

Если третье колесо (реактор) свободно вращается, то гидротрансформатор работает в режиме гидромуфты.

Если же реакторное колесо фиксируется неподвижно, то за счет своих лопастей он изменяет направление потока жидкости, выходящей из турбинного колеса и направляет его под определенным углом на лопасти насосного колеса. Это позволяет значительно увеличить передаваемый от двигателя в трансмиссию крутящий момент. Таким образом происходит трансформация крутящего момента.

*Коэффициент трансформации момента Kt (или силовое передаточное отношение) определяется отношением крутящего момента турбинного колеса к крутящему моменту насосного колеса гидропередачи Kt = MT / MH.

В автомобильных гидротрансформаторах коэффициент трансформации равен 2-3,5, а КПД 0,9

Схема потока жидкости в гидротрансформаторе:

Недостатком гидропередачи является рассогласование частот вращения насосного и турбинного колес, так называемое — скольжение гидропередачи, имеющее место при любом режиме работы трансмиссии. Минимальная величина скольжения составляет примерно 3% и приводит к снижению КПД гидропередачи. Так как, при движении автомобиля с постоянной скоростью наличие гидротрансформатора в трансмиссии не является необходимым, как это требуется на режимах разгона и торможения, в современных коробках применяют механизм блокировки гидротрансформатора. Для блокировки гидротрансформатора чаще всего используется блокировочная муфта, которая позволяет жёстко соединить между собой насосное и турбинное колесо. Это приводит к тому, что гидротрансформатор выключается из силового протока, а двигатель напрямую соединяется с ведущим валом коробки передач.

Основные детали гидротрансформатора:

Детали гидротрансформатора: 1 — насосное колесо; 2 — турбинное колесо; 3 — крышки муфты свободного хода; 4 — часть корпуса гидротрансформатора; 5 — остатки рабочей жидкости с продуктами механического износа деталей; 6 — колесо реактора; 7 — муфта свободного хода реактора; 8 — упорная шайба турбинного колеса; 9 — упорный подшипник реактора; 10 — поршень блокировки гидротрансформатора

Компоновка деталей гидротрансформатора:

В качестве рабочей жидкости в современных гидротрансформаторах используется ATF

Характеристики керамического и металлокерамического сцепления

В последнее время любители экстремальной быстрой езды открыли для себя керамическое и металлокерамическое сцепление. Керамика значительно выигрывает, если ее установить на мощный агрегат, который любит стартовать с пробуксовкой и сжигать резину. Металлокерамическое сцепление может выдерживать значительные нагрузки и является лучшим выбором гонщиков.

Диски производят с добавление углеродистого волокна, кевлара и керамики. Такой состав позволяет на 10–15% поднять передачу крутящего момента без увеличения прижимной силы, оказываемой на корзину. Живут такие диски, как правило, в четыре раза дольше обычных. Производят 3-х, 4-х, 6-и лепестковые модели, которые отлично справляются с температурными и механическими нагрузками. Некоторые водители жалуются на слишком резкое переключение передач при керамическом сцеплении, но определенного мнения на этот счет среди автомобилистов пока нет.

Заключение

Включением гидромуфты в состав привода достигается существенное улучшение его статических и динамических характеристик, что способствует повышению эксплуатационной надежности машин.

Гидромуфта, способная в режимах пуска и торможения ограничивать заданным значением крутящий момент, является эффективным быстродействующим средством защиты от недопустимых перегрузок двигателя, механической передачи и машины в целом.

Обладая свойствами демпфирования и гашения крутильных колебаний, пульсирующих и пиковых нагрузок, гидромуфта позволяет увеличить срок службы машин.

Гидромуфты ведущих фирм Запада широко используются во всех отраслях промышленности большинства стран мира. В то же время в России так же, как и в странах СНГ, наблюдается значительное отставание в сфере серийного производства и применения гидромуфт, что снижает технический уровень и эксплуатационную надежность многих отечественных машин.

Статья про гидромуфту: для чего она нужна, комплектующие, особенности работы, возможные неисправности. В конце статьи — видео анимации гидромуфты КамАЗа.

  • Принцип работы
  • Признаки износа и поломки гидромуфты и гидротрансформатора
  • Видео анимации гидромуфты КамАЗа

Гидравлическая муфта является частью закрытой системы автоматической и полуавтоматической коробки передач. Отдельный узел гидромуфты (в современных моделях авто — гидротрансформатор) предназначен для плавной передачи крутящего момента от коленвала к коробке-автомат.