Архимедова сила: что это такое и как действует

Оглавление

Растворимость газов

Многие жидкости способны растворять в себе газы. Эта способность характеризуется количеством растворенного газа в единице объема жидкости, различается для разных жидкостей и изменяется с увеличением давления.

Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, то есть:

где Vг — объем растворенного газа, приведенный к нормальным условиям (p, Т);Vж — объем жидкости;k — коэффициент растворимости;р — давление жидкости.

Коэффициент k имеет следующие значения при 20°С:

вода 0,016
керосин 0,13
минеральные масла 0,08
жидкость АМГ-10 0,1

При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказывается на работе гидросистем.

Вязкость и реальная жидкость

Любой реальной жидкости присуща определенная степень вязкости. Благодаря этому при относительном сдвиге смежных частиц жидкости возникает внутреннее трение. Существуют легко подвижные жидкости – воздух, вода. Какие жидкости называют реальными высоковязкими? Те, в которых сопротивление сдвигу значительно. Это тяжелые масла, глицерин.

Вязкость характеризует подвижности частиц жидкости, ее текучесть. На этом построен закон внутреннего трения Ньютона. По нему при течении жидкости между ее слоями образуются касательные напряжения, которые пропорциональны градиенту скорости.

τ=±μdvdy,

где τ — касательное напряжение или сила трения, приходящаяся на единицу площади;

dvdy  — градиент скорости. Он определяет изменение скорости du на единицу расстояния между смежными слоями жидкости dy в перпендикулярном к движению направлении;

μ — динамический коэффициент вязкости.

Реальные жидкости делятся на:

Определение 1

Ньютоновские реальные жидкости это жидкости, при движении одного слоя которых относительно другого величина касательных напряжений (внутреннего трения) пропорциональна скорости сдвига. При относительном покое эти напряжения равны нулю.

Определение 2

Неньютоновские. Обладают большой подвижностью и отличаются от ньютоновских жидкостей наличием касательных напряжений (внутреннего трения) в состоянии покоя, величина которых зависит от вида жидкости.

Основные физические свойства реальных жидкостей

  1. Плотность – масса жидкости, находящаяся в единице объема. ρ=mV, кгм3
  2. Удельный вес – вес жидкости в единице объема. V=GV=ρ*g, Hм3.
  3. Удельный вес – вес жидкости в единице объема. Характеризуется коэффициентом объемного сжатия βV=∆VV*∆p=∆pp∆p,Па-1. Коэффициент определяет относительное изменение объема на единицу давления.
  4. Упругость –восстановление объема жидкого тела после прекращения внешнего воздействия. Определяется модулем объемной упругости E=1βV=p∆p∆p, Па по формуле, обратной нахождению коэффициента объемного сжатия.
  5. Температурное расширение – изменение объема жидкости при сохранении показателей давления. Коэффициент температурного расширения рассчитывается по формуле βτ=∆VV∆t=∆pp∆p, °C-1
  6. Поверхностное натяжение или капиллярность. Возникает под действием сил взаимного притяжения между молекулами жидкости. Объем жидкости стремится к форме с минимальной поверхностью. Поверхностное натяжение формирует молекулярное давление в жидкости, нормальное к ее поверхности.
  7. Вязкость определяет возможность жидкости сопротивляться сдвигу слоев жидкости.

Также к свойствам относятся газосодержание, испарение, кипение, теплоемкость и др.

Информация о реальной жидкости – это в гидравлике теоретическая основа. Законы равновесия и движения жидкости, эксперименты, связанные с ними, позволяют решать инженерные задачи. Полученные расчеты и выводы применяются при конструировании систем кондиционирования, вентиляции, газопроводов.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: “Назовите свойства жидкостей” человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда. Физические свойства жидкости весьма разнообразны.

Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, – это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем. От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Работа, энергия, мощность

Механическая работа — это скалярная величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение. Подразумевается, что перемещение произошло в том же направлении, в котором действует сила.

Формула работы в курсе физики за 7 класс:

A = F × S, где F — действующая сила, S — пройденный телом путь.

Единица измерения работы в СИ: джоуль (Дж).

Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.

Мощность — это скалярная величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения.

Формула мощности:

N = A / t, где A — работа, t — время ее совершения.

Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.

N = F × v, где F — сила, v — средняя скорость тела.

Единица измерения мощности в СИ: ватт (Вт).

Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.

  • Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.

  • Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.

Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:

Кинетическая энергия

Пропорциональна массе тела и квадрату его скорости.

Ek = mv2/2

Потенциальная энергия

Равна произведению массы тела, поднятого над Землей, на ускорение свободного падения и высоту поднимания.

Ep= mgh

Полная механическая энергия

Складывается из кинетической и потенциальной энергии.

E = Ek+Ep

Сохранение и превращение энергии

Если механическая энергия не переходит в другие формы, то сумма потенциальной энергии и кинетической представляет собой константу.

Ek+ Ep= const

Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.

Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии.

Формула для расчета КПД:

где Ап— полезная работа, Аз— затраченная работа.

КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.

Удачи на экзаменах!

Шпаргалки по физике за 7 класс

В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.

.

.

Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно — ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества — одна из самых распространенных агрегатных форм на нашей планете.

Как действует сила Архимеда

Поскольку сила Архимеда, действующая на тело, зависит от объёма его погружённой части и плотности среды, в которой оно находится, можно рассчитать, как поведёт себя то или иное тело в определённой жидкости или газе.

Если плотность тела меньше плотности жидкости или газа — оно будет плавать на поверхности.

Если плотности тела и жидкости или газа равны — тело будет находиться в безразличном равновесии в толще жидкости или газа.

Если плотность тела больше, чем плотность жидкости или газа, — оно уйдёт на дно. 

Сила Архимеда в жидкости: почему корабли не тонут

Корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Но если корабль получит пробоину и пространство внутри заполнится водой, то общая плотность судна увеличится, и оно утонет. 

В подводных лодках существуют специальные резервуары, заполняемые водой или сжатым воздухом в зависимости от того, нужно ли уйти на глубину или подняться ближе к поверхности. Тот же самый принцип используют рыбы, наполняя воздухом специальный орган — плавательный пузырь. 

На тело, плотно прилегающее ко дну, выталкивающая сила не действует. Это учитывают при подъёме затонувших кораблей. Сначала судно слегка приподнимают, позволяя воде проникнуть под него. Тогда давление воды начинает действовать на корабль снизу. 

Но чтобы поднять корабль на поверхность, необходимо уменьшить его плотность. Разумеется, воздух в получившем пробоину корпусе не удержится. Поэтому его заполняют каким-нибудь лёгким веществом, например, шариками пенополистирола. 

Примечательно, что эта идея впервые пришла в голову не учёным, а авторам диснеевского комикса, в котором Дональд Дак таким образом поднимает со дна яхту Скруджа Макдака. Датский инженер Карл Кройер (Karl Krøyer), впервые применивший метод на практике, по собственному признанию вдохновлялся «Утиными историями».


‍Дональд Дак поднимает со дна яхту при помощи шариков для пинг-понга. Walt Disney Corporation, 1949‍

Сила Архимеда в газах: почему летают дирижабли

В воздухе архимедова сила действует так же, как в жидкости. Но поскольку плотность воздуха обычно намного меньше, чем плотность окружённых им предметов, выталкивающая сила оказывается ничтожно мала.

Впрочем, есть исключения. Воздушный шарик, наполненный гелием, стремится вверх именно потому, что плотность гелия ниже, чем плотность воздуха. А если наполнить шар обычным воздухом — он упадёт на землю. Плотность воздуха в нём будет такая же, как у воздуха снаружи, но более высокая плотность резины обеспечит падение шарика.

Этот принцип используется в аэростатах — воздушные шары и дирижабли наполняют гелием или горячим воздухом (чем горячее воздух, тем ниже его плотность), чтобы подняться, и снижают концентрацию гелия (или температуру воздуха), чтобы спуститься. На них действует та же выталкивающая сила, что и на подводные лодки. Именно поэтому перемещения на аэростатах называют воздухоплаванием.

Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72021 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается архимедова сила. 

Физические и химические свойства

Жидкости имеют поверхностное натяжение и капиллярность. Они обычно расширяются при повышении температуры и теряют объём при охлаждении, хотя при сжатии он очень изменчив. Объекты, погруженные в жидкость, подвержены явлению, известному под названием плавучесть.

Поскольку жидкие вещества подвергаются действию силы тяжести, их форма определяется ёмкостью. В состоянии покоя они подвержены гравитации, в любой их точке создаётся давление одинаковой величины во все стороны, как это было установлено в соответствии с законом Паскаля.

Жидкие вещества характеризуются тем, что их внутренние силы не зависят от общей деформации, хотя обычно они находятся в связи с ее скоростью. Это то, что отличает деформируемые твёрдые вещества от жидких. Кроме того, они характеризуются наличием сопротивления течению, называемого вязкостью (она также присутствует в вязкоупругих твёрдых веществах). Это означает, что на практике для поддержания скорости в жидкости необходимо приложить силу или давление. Если эта сила прекращается, движение окончательно останавливается через некоторое время.

Вязкость и текучесть

Вязкость — это мера сопротивления вытеснению жидкости при перепаде давления. Когда жидкое вещество протекает, предполагается наличие стационарного слоя жидкости или газа, прилипшего к поверхности материала, через который осуществляется поток. Первый слой натирается приклеенной поверхностью, второй — третьим и т. д. Это трение между последовательными слоями отвечает за противодействие потоку, то есть за вязкость.

Вязкость измеряется в пуазах. Она представляет собой свойство жидкости, в которой необходимо скользить слоем квадратного сантиметра со скоростью 1 см/с по отношению к неподвижному предмету, расположенному на расстоянии 1 см от силы.

Она обычно уменьшается с повышением температуры, хотя некоторые жидкие вещества показывают увеличение вязкости при нагревании. Для газов эта величина увеличивается с ростом температуры. Вязкость определяется с помощью вискозиметра. Среди всех известных сегодня приборов наиболее часто используется вискозиметр Оствальда.

Текучесть — это характеристика жидкостей или газов, дающая им возможность проходить через любое отверстие, даже маленькое. Она обусловлена тем фактом, что жидкое вещество может приобретать любую деформацию без необходимости оказывать механическое напряжение. Оно по существу зависит от ее скорости, а не от нее само́й, в отличие от твёрдых тел, имеющих память формы и испытывающих напряжение, которое больше и дальше от первоначальной формы. То есть в твёрдом теле напряжение связано прежде всего со степенью деформации.

При определённых условиях жидкость может нагреваться выше температуры кипения. В таком состоянии она называется перегретой. Но также есть возможность охлаждать ее ниже точки замерзания. Тогда она называется переохлаждённой.

Другие характеристики

Жидкости имеют объём. Они обладают изменчивостью формы и очень специфическими характеристиками:

  1. Сжатие: сила притяжения между равными молекулами.
  2. Адгезия: сила притяжения между различными молекулами.
  3. Поверхностное натяжение: сила, которая проявляется на поверхности, посредством чего внешний слой жидкости стремится удерживать свой объём в пределах минимальной поверхности.
  4. Капиллярность: проникновение жидкостей через трубки (капилляры) очень малого диаметра, где сила сцепления превышает силу тяжести.

Так кратко можно рассказать о жидких состояниях вещества. Более полную информацию о жидких смесях и их строении, а также о том, какие они бывают, школьники узнают из учебника Габриеляна для 11 класса. Разобравшись с темой, ученики записывают на уроках конспекты и решают задачи.

Основные физические свойства жидкости

Подобно твердому телу, жидкость обладает малой сжимаемостью и большой плотностью. Подобно газу, она не имеет упругости формы и легко течет. Молекулы жидкости, как и частицы твердого тела, совершают тепловые колебания, однако их положение равновесия время от времени изменяется, что и обеспечивает текучесть.

Также жидкости свойственна капиллярность — способность подниматься и опускаться в узких сосудах. Общая величина поверхности жидкости мала, и влияние стенок распространяется на всю поверхность. Сосуд в данном случае считается достаточно узким, капиллярным, если его размеры сравнимы с радиусом кривизны поверхности жидкости в нем. Это явление используют для обнаружения трещин размером от 1 мкм, не видных невооруженным глазом.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Классификация жидких тел 

Жидкости делятся на ньютоновские, т.е. подчиняющиеся законам вязкого трения Ньютона, и неньютоновские.

Каждая молекула жидкости плотно окружена со всех сторон своими ближайшими соседями, находящимися на расстояниях порядка ее диаметра \delta. Она колеблется вокруг положения равновесия, а затем резко перепрыгивает к новому центру колебаний. За секунду молекула успевает сменить место «оседлой жизни» около 100 миллионов раз, совершив между перескоками от тысячи до 100 тысяч колебаний. Чем сильнее межмолекулярное взаимодействие, тем ниже подвижность молекул и больше вязкость. Если на колеблющуюся молекулу действует постоянная внешняя сила, например, со стороны соседнего движущегося слоя, то в направлении этой силы частица будет совершать больше скачков, чем в противоположном. Поэтому и на ее хаотические блуждания наложится упорядоченное перемещение со скоростью\( v\;=\;(N_1\;-\;N_2)\;\times\;\delta.\)

\(\delta\) здесь — длина одного скачка, \(N_1\) и \(N_2\) — среднее число скачков за одну секунду в направлении силы и в противоположном направлении соответственно.

Приложенная сила совершает работу по раздвиганию тех молекул, между которыми протискивается рассматриваемая частица. Эта работа в конечном счете идет на увеличение скорости беспорядочного теплового движения молекул. Скорость упорядоченного движения не меняется со временем, т.е. течение жидкости равномерное, несмотря на действие внешней силы. Значит, приложенную силу уравновешивает сила сопротивления, которая определяется вязкостью. При увеличении температуры подвижность молекул возрастает. Это приводит к уменьшению силы сопротивления, так как в нагретой жидкости чаще создаются благоприятные условия для перемещения частиц в направлении приложенной силы.

Ньютон предположил, что величина этой силы, называемой силой внутреннего трения, пропорциональна разности скоростей элементов жидкости. Конечно, в сплошной среде никаких элементов нет и это понятие используют лишь для наглядности, а скорость жидкости распределена непрерывно. Следовательно, сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости:

\(F\;=\;\eta\;\times\;\frac{d\;\times\;v}{d\;\times\;n}\;\times\;S.\)

Это закон вязкого трения Ньютона. Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются ньютоновскими, или жидкостями с линейной вязкостью. Вода, бензин, спирт, глицерин и многие другие жидкости являются ньютоновскими.

Но среди жидкостей довольно часто можно встретить такие, динамика которых описывается более сложными соотношениями: например, загустевающие краски, лаки, строительные растворы, мед, смолы, глинистые и болотистые почвы и др.

Первые модели неньютоновских жидких сред были предложены во второй половине XIX века Джеймсом Кларком Максвеллом и Уильямом Томсоном. В ХХ веке благодаря работам Бингама и Рейнера этот раздел механики сплошных сред стал самостоятельной наукой, которая носит название реология, произошедшее от греческого слова «реос» — «течение», «поток».

Вода как растворитель

С совершенно чистой водой, не содержащей никаких других веществ, большинство людей никогда не встречается. Такая вода используется только в специальных целях.

Почти все жидкости, с которыми мы сталкиваемся в повседневной жизни и деятельности, представляют собой растворы различных веществ.

Раствор — это однородная смесь двух и более веществ.

Одно из веществ, входящих в состав раствора, называется растворителем, а остальные — растворенными веществами. Очень часто растворителем является вода. Вода может растворять твердые, жидкие и газообразные вещества.

Все природные воды содержат растворенные соли. Их легко обнаружить экспериментально, выпарив воду на часовом стекле. Кроме солей, вода может растворять различные газы. Их присутствие (правда, не всегда) можно обнаружить экспериментально. Например, поместив пробирку с холодной водой из-под крана в теплое место, через некоторое время можно заметить у стенок пробирки пузырьки. Это растворенные газы (преимущественно кислород) выделяются из раствора при его нагревании до комнатной температуры (рис. 108).

Многие жидкости также хорошо растворимы в воде. Например, серная кислота и спирт неограниченно растворяются в воде. В таком случае говорят, что вещество смешивается с водой в любых соотношениях. Из-за хорошей растворимости многих веществ в воде ее иногда называют универсальным растворителем.

Краткие выводы урока:

  1. Вода не имеет вкуса, цвета (в тонком слое) и запаха, кипит при 100 °С, а переходит в твердое состояние при 0 °С.
  2. Плотность твердой воды меньше, чем жидкой.
  3. Раствор — это однородная смесь двух и более веществ.
  4. Вода является универсальным растворителем — она хорошо растворяет многие твердые, жидкие и газообразные вещества.

Надеюсь урок 27 «Состав и физические свойства воды» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как наши авторы распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Вязкость

Различные жидкости имеют разную текучесть. Так, вода из бутылки вытекает быстрее, чем растительное масло. Мёд из стакана выливается медленнее, чем молоко. На эти жидкости действуют одинаковые силы тяжести. Так почему же их текучесть отличаются? Всё дело в том, что они обладают различной вязкостью

. Чем выше вязкость жидкости, тем меньше её текучесть.

Что же такое вязкость, и какова её природа? Вязкость также называют внутренним трением

. Это способность жидкости сопротивляться перемещению различных слоёв жидкости относительно друг друга. Молекулы, находящиеся в одном из слоёв и сталкивающиеся между собой во время теплового движения, сталкиваются ещё и с молекулами соседних слоёв. Возникают силы, тормозящие их движение. Они направлены в сторону, противоположную движению рассматриваемого слоя.

Вязкость — важная характеристика жидкостей. Её учитывают в различных технологических процессах, например, когда по трубопроводам необходимо перекачивать жидкость.

Вязкость жидкости измеряют с помощью прибора, называемого вискозиметром.

Самым простым считается капиллярный вискозиметр
. Принцип его действия не сложен. Подсчитывается время, за которое заданный объём жидкости протекает через тонкую трубочку (капилляр) под воздействием разности давлений на его концах. Так как известны диаметр и длина капилляра, разность давлений, то можно произвести расчёты на основании закона Пуазёйля

, согласно которому проходящий в секунду объём жидкости (секундный объёмный расход) прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени её радиуса и обратно пропорционален коэффициенту вязкости жидкости

.

где
Q


— секундный расход жидкости, м 3 /с;

р 1 — р 2


= ∆р

— перепад давлений на концах капилляра, Па;

R


— радиус капилляра, м;

d


— диаметр капилляра, м;

ƞ


— коэффициент динамической вязкости, Па/с;

l



длина капилляра, м.

Определение закона Паскаля

Итак, мы подошли к формулировке закона Паскаля, и звучит она так:

Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях.

Обратите внимание — закон работает только с жидкостями и газами. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел

Если молекулы жидкости и газа движутся почти свободно, то молекулы твердых тел так не умеют. Они могут лишь колебаться, немного отклоняясь от исходного положения. Именно благодаря свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.

Рассмотрим опыт с шаром Паскаля, чтобы стало понятнее.

Присоединим к трубе с поршнем полый шар со множеством небольших отверстий. Зальем в шар воду и будем давить на поршень. Давление в трубе вырастет и вода будет выливаться через отверстия, причем напор всех струй будет одинаковым. Такой же результат получится, если вместо воды в шарике будет газ.

Важный момент
У Земли есть атмосфера. Эта атмосфера создает давление, которое добавляется ко всем другим. То есть если мы давим рукой на стол, то давление, которое испытывает стол — это давление нашей руки плюс атмосферное.

Механическое движение: формулы за 7 класс

Механическое движение — перемещение тела в пространстве, в результате которого оно меняет свое положение относительно других тел. Закономерности такого движения изучают в рамках механики и конкретно ее раздела — кинематики.

Для того, чтобы описать движение, требуется тело отсчета, система координат, а также инструмент для измерения времени. Это составляющие системы отсчета.

Изучение механического движения в курсе по физике за 7 класс включает следующие термины:

  • Перемещение тела — вектор, проведенный из начальной точки в конечную.

  • Траектория движения — мысленная линия, вдоль которой перемещается тело.

  • Путь — длина траектории тела от начальной до конечной точки.

  • Скорость — быстрота перемещения тела или отношение пройденного им пути ко времени прохождения.

  • Ускорение — быстрота изменения скорости, с которой движется тело.

Равномерное прямолинейное движение означает, что тело движется вдоль прямой с одинаковой скоростью. В таком случае перемещение тела и его путь будут равны.

Формула скорости равномерного прямолинейного движения:

V = S / t, где S — путь тела, t — время, за которое этот путь пройден.

Формула скорости равномерного криволинейного движения:

где S1 и S2 — отрезки пути, а t1 и t2 — время, за которое был пройден каждый из них.

Единица измерения скорости в СИ: метр в секунду (м/с).

Формула скорости равноускоренного движения:

V = V + at, где V— начальная скорость, а — ускорение.

Единица измерения ускорения в СИ: м/с2.

Физические свойства жидкости

Жидкость – физическое тело, которое обладает свойством текучести, т. е. не имеющее способности самостоятельно сохранять свою форму.Текучесть жидкости обусловлена подвижностью молекул, составляющих жидкость.

Жидкостью называется агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость характеризуется следующими свойствами: 1) сохраняет объем; 2) образует поверхность; 3) обладает прочностью на разрыв; 4) принимает форму сосуда; 5) обладает текучестью. Свойства жидкости с 1) по 3) подобны свойствам твёрдых тел, а свойство 4) – свойству жидкости.

Жидкости, законы движения и равновесия которых изучаются в гидравлике (механике жидкости и жидкости), делятся на два класса: сжимаемые жидкости или газы, почти несжимаемые – капельные жидкости.

В гидравлике рассматриваются как идеальные, так и реальные жидкости.

Идеальная жидкость – жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого такая жидкость не сопротивляется касательным силам сдвига и силам растяжения.

Идеальная жидкость совершенно не сжимается, она оказывает бесконечно большое сопротивление силам сжатия.

Такой жидкости в природе не существует – это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.

Реальная жидкость – жидкость, которая не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям, а также отчасти сжимается.

Для решения многих задач гидравлики этим отличием в свойствах идеальной и реальной жидкостей можно пренебречь.

В связи с этим физические законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками.

Плотность жидкости

Килограмм на кубический метр [кг/м3] равен плотности однородного газообразного вещества, масса которого при объёме 1 м3 равна 1 кг.

где

dm – масса элемента жидкости, объёмом dV;

dV – объём элемента жидкости.

Динамическая вязкость жидкости

где

F – сила внутреннего трения жидкости.

ΔS – площадь поверхности слоя жидкости, на которую рассчитывается сила внутреннего трения.

– величина, обратная градиенту скорости жидкости.

Паскаль-секунда равна динамической вязкости жидкости, касательное напряжение в которой при ламинарном течении на расстоянии 1 м по нормали к направлению скорости, равно 1 Па.

Поверхностное натяжение жидкости

где

dF – сила, действующая на участо контура свободной поверхности нормально к контуру и по касательной к поверхности к длине dl этого участка.

dl – длина участка поверхности жидкости.

Ньютон на метр [Н/м] равен поверхностному натяжению жидкости, создаваемому силой 1 Н, действующей на участок контура свободной поверхности длиной 1 м нормально к контуру и по касательной к поверхности.

Кинематическая вязкость жидкости

где

μ – динамическая вязкость жидкости;

ρ – плотность жидкости;

Квадратный метр на секунду [м2/с] равен кинематической вязкости жидкости с динамической вязкостью 1 Па с и плотностью 1 кг/м3.

Коэффициент теплопроводности жидкости

где

t – время;

S – площадь поверхности;

Q – количество теплоты , перенесённое за время t через поверхность площадью S.

– величина, обратная градиенту температуры жидкости.

Ватт на метр-Кельвин [Вт/(м • К)] равен коэффициенту теплопроводности жидкости, в котором при стационарном режиме с поверхностной плотностью теплового потока 1 Вт/м2 устанавливается температурный градиент 1 К/м.

Теплоемкость жидкости

где

dQ – количество теплоты, необходимое для нагревания жидкости;

dT – разность температуры.

Джоуль на Кельвин [Дж/К] равен теплоемкости жидкости, температура которого повышается на 1 К при подведении к нему количества теплоты 1 Дж.

Удельная массовая теплоемкость жидкости при постоянном давлении

Джоуль на килограмм-Кельвин [Дж/(кг • К)] равен удельной теплоемкости жидкости, имеющего при массе 1 кг теплоемкость 1 Дж/К.

Температуропроводность жидкости

где

λ – теплопроводность жидкости;

Cp – удельная массовая теплоемкость жидкости.

ρ – плотность жидкости.

Квадратный метр на секунду [м2/с] равен температуропроводности жидкости с коэффициентом теплопроводности 1 Вт/(м К), удельной теплоемкостью при постоянном давлении 1 [Дж/(кг • К) и плотностью 1 кг/м3.