АЛКОГОЛИКИ — НАШ ПРОФИЛЬ
На первом месте по популярности — добавление в бензин биоэтанола, то есть спирта из растительного сырья. Около 90% его производства приходится на Бразилию и США. Южноамериканцы гонят спирт из сахарного тростника, северные соседи — преимущественно из кукурузы. Сгодятся и другие растения с высоким содержанием крахмала или сахара, а также целлюлоза.
В некоторых странах добавление от 5 до 15% этанола установлено законодательно. Стандартному двигателю не повредит, если ему в бензин плеснут до 10% спирта. На колонки со смесями, содержащими более десятой доли этанола, обязательно наносят предупреждение об этом: старым двигателям такой рацион может не понравиться.
Бразильцы практикуют езду на биотопливе еще со времен нефтяных кризисов 70‑х годов прошлого века. Сейчас в стране нет в продаже бензина, в котором этанола менее 20% (Е20). Альтернатива этой смеси — только чистый Е100 (95–96% спирта и 4–5% воды). В Швеции и США распространена смесь Е85. Заправлять ими можно только «гибкотопливные» (flex-fuel) автомобили. Их система питания настроена под этанол — чистый или в сочетании с бензином в любой пропорции. Кроме того, октановое число спирта выше, чем у бензина, поэтому обычно требуются еще и переделки по железу, чтобы поднять степень сжатия до 12…13,5:1. Отсюда — более высокий КПД, лучшие мощностные показатели и меньшее количество выбросов. С другой стороны, теплотворная способность E85 ниже, чем у бензина, — если двигатель заправить такой смесью, он потеряет примерно четверть прежних сил.
Гибридные модели и возможные модификации
Благодаря большому интересу к использованию водорода в качестве топлива для ДВС, гидродвигатели внутреннего сгорания имеют различные модификации и типы исполнения.
Схема устройства гибридного водородного двигателя
Мотор, разработанный В.С. Кащеевым, имеет иное устройство. Помимо впускного клапана (6) для подачи воздуха, выпускного для вывода выхлопных газов (7), ГБЦ имеет отдельный клапан для подачи водорода (9) и свечу зажигания (10), которые находятся в предкамере (8). Последняя расположена в ГБЦ выше уровня поршня в положении НМТ.
После преодоления поршнем НМТ в камеру сгорания подается и воспламеняется водород (предварительно поршень затягивает воздух через впускные клапаны). В это же самое время открываются выпускные клапаны. Из-за разницы атмосферного давления, отработанные газы устремляются в выпускной коллектор, создавая за собой вакуум, который перемещает поршень к ВМТ и за счет импульса обратно в крайнее нижнее положение. Как видим, принцип немного отличается, но суть остается неизменной.
Технология гибридных силовых установок – это промежуточная ступень между началом использования водорода в качестве топлива и полным отказом от использования нефтепродуктов. Автомобили с моторами такого типа могут передвигаться как на бензине, так и на водороде.
Еще более широкого распространения получило применение водорода в качестве компонента топливно-воздушной смеси. Для работы ДВС используется обычное топливо и небольшая часть гремучего газа. Это позволяет повысить степень сжатия, и уменьшить токсичность выхлопных газов.
Одним из возможных путей развития двигателей на водороде является применение силовых установок с топливными элементами. Во время химической реакции водорода и кислорода выделяется энергия, которая используется для питания электродвигателей автомобиля.
Статья в тему: Как наносится защитная полироль для кузова автомобиля в домашних условиях
Безопасность установки
Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.
Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна – не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.
Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки
Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор
Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.
Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.
Перспективы
Использование такого газа как водород потенциально может открыть невероятные большие перспективы. Причём здесь речь идёт не только про автомобильный двигатель внутреннего сгорания, работающий на водороде, но и про целый ряд других сфер применения. В их числе авиация, железнодорожный транспорт, морские суда и пр. Помимо применения в ДВС, водород также может использоваться для питания и работы вспомогательной техники, механизмов и разного оборудования.
Уже сейчас ведущие автопроизводители уделяют большое внимание возможности внедрить в массовое производство водородные ДВС. Среди них такие гиганты как Volkswagen, General Motors, Toyota, BMW и пр. В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки
При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами
В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки. При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами.
Чтобы говорить о серьёзных перспективах и массовом внедрении водорода, требуется решить хотя бы несколько главных недостатков. Эксперты уверены, что при наличии способа уменьшить стоимость газа, а также при постройке большего количества АЗС и обучении кадров для обслуживания водородных моторов, множество таких машин обязательно станут нормой на дорогах.
Технологии-конкуренты
Автопроизводители пока не могут или не хотят в полной мере сконцентрироваться на водородных технологиях, поскольку у неё есть ряд серьёзных конкурентов.
Можно выделить следующие виды моторов, которые не дают водородным ДВС и топливным элементам на водороде развиваться, совершенствоваться и массово выходить на рынок.
- Гибридные установки. Это автомобили, способные использовать одновременно несколько источников энергии. Зачастую в машину внедряют обычный ДВС и электромотор. Также бывают варианты, когда обычный двигатель на бензине работает вместе с узлом, питающимся сжатым воздухом.
- Электрокары. Сейчас активно развиваются и распространяются полностью электрические авто. Это машины, которые двигаются за счёт работы одного или нескольких электромоторов. Они питаются от специальных аккумуляторов или топливных элементов. ДВС здесь не используют.
- Жидкий азот. Вещество помещается в специальные ёмкости. Сам процесс работы выглядит так. Топливо нагревается за счёт работы специального механизма. Это приводит к испарению и образованию газа высокого давления. Этот газ идёт в двигатель, где воздействует на поршни или роторы, передавая свою энергию. Пока такие авто не получили широкого распространения.
- Сжатый воздух. Здесь основой всей силовой установки выступает пневмодвигатель. Пневматический привод заставляет машину двигаться. Топливовоздушная смесь заменена на сжатый воздух. Эта система является частью современных гибридных автомобилей.
У водорода достаточно много конкурентов. И в настоящий момент самым главным соперником справедливо считается электродвигатель.
Насколько сильно ситуация изменится в ближайшие несколько лет, говорить сложно. О каких-то резких изменениях и открытиях говорить вряд ли стоит. Но есть вероятность того, что через 10-20 лет водород станет куда более эффективным и доступным. Тем самым начнут появляться серийные водородные автомобили в большом количестве. Примерно так сейчас обстоят дела с электрокарами.
Проблемные моменты в эксплуатации
В настоящее время водородные двигатели не являются существенной альтернативой традиционным бензиновым моторам и не могут в полной мере их заменить. Одной из причин являются трудности с производством газа, так как этот процесс довольно дорогостоящий. Затруднительной также является процедура хранения, которая требует наличие температуры минус 253 градуса.
В период работы с водородом нужно отметить также следующие проблемы:
- Высокая взрывоопасность. Даже минимальный источник энергии может сдетонировать взрыв. Поэтому использовать водород нужно чрезвычайно аккуратно, ведь опасностью может быть даже чересчур тёплый воздух.
- Нюансы хранения. Для данной субстанции необходимы ёмкости большого объёма для избегания улетучивания, что становится проблематичным для применения в области легковых автомобилей.
- Повреждение поршней и цилиндров. Благодаря негативному влиянию водорода на цилиндропоршневую группу, необходимо применение специальных дорогостоящих материалов для двигателей.
Но исследователи в вопросах использования водорода в автомобильной промышленности не останавливаются и продолжают борьбу за развитие такого альтернативного источника питания.
Способы добычи водорода в качестве использования в виде энергии
Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.
Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.
Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.
Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.
А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.
Первый двигатель на водороде заработал в СССР в 1941 году!
Будете удивлены, но первый двигатель обычной «полуторки» заработал на водороде в блокадном Ленинграде в сентябре 1941 года! Молодому младшему техник-лейтенанту Борису Щелищу, руководившему подъемом аэростата заграждения, было приказано в отсутствии бензина и электричества наладить работу лебёдок. Поскольку аэростаты заполнялись водородом, ему пришла мысль использовать его как топливо.
Во время опасных опытов сгорели два аэростата, взорвался газгольдер, сам Борис Исаакович получил контузию. После этого для безопасной эксплуатации воздушно-водородной «гремучей» смеси он придумал специальный водяной затвор, исключавший воспламенение при вспышке во всасывающей трубе двигателя. Когда все наконец получилось, приехали военачальники, убедились, что система работает нормально, и приказали за 10 дней перевести все аэростатные лебедки на новый вид горючего. В виду ограниченности ресурсов и времени, Щелищ остроумно применил для изготовления гидрозатвора списанные огнетушители. И задача подъёма аэростатов заграждения была успешно решена!
Бориса Исааковича наградили орденом «Красной звезды» и командировали в Москву, его опыт использовали в частях ПВО столицы — 300 двигателей перевели на «грязный водород», было оформлено авторское свидетельство №64209 на изобретение. Таким образом был обеспечен приоритет СССР в развитии энергетики будущего. В 1942 году необычный автомобиль демонстрировался на выставке техники, приспособленной к условиям блокады. При этом его двигатель проработал 200 часов без остановки в закрытом помещении. Отработанные газы — обыкновенный пар — не загрязняли воздух.
В 1979 году под научным руководством Шатрова Е.В. творческим коллективом работников НАМИ в составе Кузнецова В.М. Раменского А.Ю., Козлова Ю.А. был разработан и испытан опытный образец микроавтобуса РАФ, работающий на водороде и бензине.
Испытания РАФ 22031 (1979 г.)
Плюсы водорода как топлива
- Водород является самым распространенным элементом во вселенной, абсолютно всё в нашей жизни состоит из него, все окружающие нас предметы имеют хоть маленькую, но частицу водорода. Именно этот факт очень приятный для человечества, ведь в отличие от нефти, водород не закончится никогда, и нам не придётся экономить на топливе.
- Он является абсолютно экологически чистым! В отличие от бензинового, водородный двигатель не выделяет вредных газов, которые негативно влияли бы на экологию. Выхлопами, которые выделяет такой силовой агрегат, является обычная пара.
- Водород, который используется в двигателях, очень воспламеняем, и автомобиль будет хорошо заводиться и передвигаться, независимо от погоды. То есть нам больше не потребуется зимой прогревать автомобиль перед поездкой.
- На водороде даже маленькие двигатели будут очень мощными и чтобы создать самый быстрый автомобиль, больше не потребуется строить агрегат размером с танк.
Конечно есть и минусы в этом топливе:
- Дело в том, что вопреки тому, что это безграничный материал, и он имеется повсюду, его очень тяжело добывать. Хотя для человечества это не проблема. Научились добывать нефть среди океана, пробурив его дно, научимся и водород брать с земли.
- Вторым минусом является недовольство нефтяных магнатов. Зразу после начала прогрессивного развития данной технологии, большинство проектов были закрыты. По слухам, всё это связано с тем, что если заменить бензин водородом, то самые богатые люди планеты останутся без дохода, а они этого позволить не могут.
Обслуживание генераторов водорода
Оборудование подлежит тщательному уходу. Специалисты советуют придерживаться следующих советов:
- не улучшать и не изменять самостоятельно генератор даже при наличии профессионального инженерного чертежа;
- рекомендовано установить на оборудование специальные датчики температуры внутри теплообменника, что даст возможность контролировать процесс перегрева воды;
- запорную арматуру можно установить в горелку и подключить ее к датчику температурных показателей. Это даст прибору возможность нормально охлаждаться.
Самодельный генератор позволяет получить водород, но применяется он в основном для экспериментов и газосварки. Чтобы обогреть немалое строение, КПД аппарата попросту не хватит. И при этом не стоит забывать о низком КПД устройства, а также хлопотах и затратах при его сборке.
Возможно ли сделать бестопливный генератор энергии своими руками?
Как сделать металлоискатель своими руками, помощь новичкам
Что такое электролиз и где он применяется?
Что такое магнитный двигатель и как его сделать своими руками?
Как изготовить электронную печатную плату в домашних условиях?
Как устроен генератор переменного тока — назначение и принцип действия
Инструкция по сборке
Для того чтобы сделать автомобиль на водороде своими руками, нужно найти подходящую по объему емкость. В ней будет обычная вода. Внутрь емкости, а в данном случае пластиковой канистры, можно установить металлические пластины. Будет лучше, если они будут из нержавеющей стали. К пластинам необходимо подвести электроды.
Крышка должна очень легко сниматься или же герметически закрываться и легко наполняться водой. Верхняя часть самодельного генератора должна иметь трубку для отвода водорода прямиком во впускной коллектор вашего автомобиля. Обязательно нужно надежно загерметизировать крышку. Водород и кислород — весьма опасные газы. Затем нужно заизолировать пространство между пластинами. Так можно улучшить выработку газов и уменьшить возможные потери.
При работе данного генератора нужно внимательно следить, чтобы выводы от электродов и наших пластин не разболтались. Это влечет за собой риск пожара. Корпус нашего генератора также должен быть максимально надежным. Заизолировать крышку поможет силиконовая резина.
Преимущества водородных автомобилей по сравнению с электрокарами
Данное сравнение часто оспаривают эксперты, поскольку автомобили на водороде также входят в разряд электромобилей. Водородные составляющие, в отличие от аккумуляторов, являются более долговечными, ведь срок службы двигателя в обычном электромобиле невелик.
Водород хорошо себя показал при холодном пуске автомобиля при отрицательных температурах воздуха, когда двигатель электромобиля не справляется с воздействием температур. Заправка водородных автомобилей также считается преимуществом, так как выполняется за несколько минут. Но электрокары имеют более низкую стоимость по сравнению с машинами на водороде.
Плюс и минус водородного ДВС
Достоинства и недостатки водородных моторов
Водородные двигатели имеют преимущества, которыми не обладают другие типы моторов:
- производительность без создания посторонних шумов;
- высокий КПД водородного двигателя;
- повышенная экологичность (побочный продукт только вода);
- хороший уровень мощности;
- простота в устройстве функционала.
Среди отрицательных характеристик выделяется высокие затраты на производство водорода и сложный уровень хранения. При производстве конструкция требует увеличения веса транспортного средства. Также отмечается высокая взрывоопасность водородных составляющих.
Будущая чистая энергия
Ожидается, что водород как топливо будет сочетаться с электричеством, чтобы сформировать два компонента будущей экономики чистой энергии. Водород извлекается из сырья, поэтому не может удовлетворить все потребности и желания существующих потребителей. Однако, в сочетании с электричеством он может быть наиболее востребованным источником энергии.
В период 2025-2030 годам сочетание требований к экологически чистому транспорту — как с точки зрения регулируемых выбросов, так и выбросов парниковых газов – приведет к переходу на водород как топливо, в то время как другие требования, такие как требования к снижению шума, переместят источник питания в сторону электрического первичного двигателя.
Установленная мощность американского автопарка эквивалентна пятикратной установленной мощности всех электростанций, поэтому, если бы транспортные средства (которые обычно работают менее 5% своего срока службы в качестве двигателей) могли тратить оставшееся время на выработку электроэнергии. Конечно, единственной проблемой было бы управление потоками и обеспечение топливом.
Кроме того, некоторые компании намерены использовать возобновляемые источники энергии для электролиза воды и производства водорода, необходимого как топливо на автозаправочных станциях и в домах. Водородные серийные автомобили Тойота «Мирай» уже колесят дороги на которых применен водородный двигатель.
Особенности гибридных конструкций
Характеристики, которыми обладает водородное топливо, активно использовались многими конструкторами с целью создания уникального гидродвигателя внутреннего сгорания. Например, разработанный В.С. Кащеевым метод – это принципиально иная установка, имеющая не только традиционный подающий воздух впускной клапан и выпускное устройство отвода выхлопных газов, но и отдельный клапанный механизм подачи водорода, а также свечу зажигания в головке блоков цилиндров.
Несмотря на некоторые принципиальные отличия, механизм работы остаётся неизменным, поэтому любые гибридные силовые агрегаты принято считать переходной стадией от применения дизеля и бензина к использованию водородного топлива. Благодаря высоким показателям КПД, лёгкое химическое вещество вводится в состав топливно-воздушных смесей, что значительно повышает степень сжатия, а также снижает токсичность выхлопов. Кроме этого, взаимодействие кислорода с водородом сопровождается выделением достаточного количества энергии, которая нужна автомобильным электродвигателям.
Заправка водородных автомобилей
Так как выпуск автомобилей с участием водорода является не сильно развитой отраслью, водородных заправок в мире критично мало. В 2018 году около 150 штук заправок приходилось на Американский континент, а ещё 150 штук разделялось между Японией, Китаем и Германией.
Существуют переносные мобильные установки для заправки водородным топливом, они могут произвести достаточно большое годовое количество водорода – около 1 тонны. С таким количеством водорода можно заправлять несколько автомобилей в день. Его производят путём электролиза воды в ночных условиях, чтобы не спровоцировать перегрузку сети.
Водородные заправки можно разделить на следующие виды:
- Мелкие. Изготавливают за сутки 20 кг топлива, что хватит в качестве топлива для 5 стандартных авто.
- Средние. Способны изготовить 50-1250 кг водорода, что хватит на 25 грузовиков или 250 легковых авто.
- Крупные. Объёмы производства – более 2500 кг водорода, что достаточно для 500 легковых авто.
Стоимость подобной водородной заправки – около 3 млн долларов. Учитывая большие сложности, количество таких заправок растёт небольшими темпами.
В каком виде транспортировать водород
Проблема подготовки водорода для транспортировки решается по-разному: H2 сжимают, сжижают, смешивают с другими веществами. У каждого из этих вариантов свои преимущества и недостатки, а оптимальное решение зависит от географии поставок, расстояния, объёма и вида водорода для потребителя.
В любом агрегатном состоянии (кроме твёрдого, конечно) водород можно пустить по имеющимся газовым трубам, что однозначно дешевле, чем строить новую инфраструктуру. Первый кандидат — газовые сети. В мире насчитывается 3 млн километров газопроводов и 400 млрд кубометров подземных хранилищ метана. Но с этим есть технические проблемы:
-
у водорода низкая плотность энергии, и объёмы (или время) его поставки через газопровод придётся увеличить;
-
водород очень горюч на воздухе, поэтому чтобы снизить риски, придётся менять оборудование по всей цепочке поставок;
-
не всякая инфраструктура для, например, метана подойдёт водороду; особенно это касается потребительских котлов, бойлеров и т. п. (об этом подробнее ниже);
-
потребителям нужен разный газ (одним только чистый водород, другим — смесь), а технологии выделения чистого водорода из полученной смеси повысят конечную стоимость газа на $0,3-0,4 за кг.
В итоге наряду с газообразным водородом нам придётся производить его сжиженные и смешанные версии.
Как и природный газ, водород сжижается. Но проблема в том, что для этого H2 нужно охладить до -253 °C . Если представить, что для охлаждения используется часть самой поставки H2, то на сжижение уйдёт 25-35% её массы.
Такая же операция над природным газом требует только 10% массы. Есть и другой вариант: водород смешивается с другими веществами для перевозки в жидком виде. Главные претенденты на роль «попутчиков» H2 — упомянутый выше аммиак и жидкие органические носители водорода (Liquid Organic Hydrogen Carrier, LOHC), к примеру, метилциклогексан (C7H14). Чтобы смешать водород с аммиаком, нужно 7-18% энергии из объёма поставки. Столько же водорода теряется, когда он выделяется из этой смеси. Но аммиак сжижается при температуре -33 °C и содержит в 1,7 раза больше водорода на кубометр, поэтому аммиачно-водородную смесь транспортировать дешевле, чем чистый водород.
Схожим образом водород можно включить в жидкий органический носитель. На конверсию и реконверсию при этом уйдёт 35-40% водорода, хотя объёмы поставок эти издержки покрывают.
Электрокары и гибриды: светлое будущее или скрытая угроза?
По прогнозам компании BloombergNEF (BNEF), к 2040 году доля электрокаров от числа проданных авто составит 58%. При этом автомобили на электротяге составят лишь треть от общего количества машин на дорогах в мире. На процесс влияет сразу несколько факторов:
- Инфраструктура. Не все страны успеют ее подготовить. К примеру, в США это сделать проще, поскольку автовладельцы обычно живут в частных домах и могут поставить автомобиль на подзарядку на ночь. Еще первые серийные модели электрокаров , выпущенные в 1990-е годы, можно было подключить к обычной американской бытовой розетке. Сегодня возможностей стало еще больше, а в создании городской сети зарядных станций заинтересованы крупные игроки — например, Tesla. В России, как и во многих других странах, условия придется создавать с нуля.
- Политика. Уже 13 стран объявили, что до 2040 года введут запрет на продажу новых автомобилей с ДВС. Остальные государства пока не готовы к таким радикальным мерам. К тому же такие решения могут нанести удар по экономике — например, переход на электрокары в Германии может оставить без работы десятки тысяч человек.
- Технологии. Батареи становятся все более энергоемкими, скорость подзарядки увеличивается, а ключевые компоненты аккумуляторов, например, литий, дешевеют с каждым годом. Развитие технологий позволит электрифицировать общественный транспорт, а также даст толчок микромобильности. Аналитики BNEF полагают, что к 2030 году именно автобусы и двухколесный транспорт, а не легковые авто, составят основную долю рынка EV. С этим согласны и другие эксперты: они считают, что нужно делать ставку на электрификацию транспорта, поскольку им пользуется больше людей, а значит, и потенциальной пользы будет больше.
- Экология. Проблема электрокаров заключается и в отсутствии исследований: пока нельзя точно оценить, как массовый переход на EV отразится на экологии. Электромобиль производит меньше выбросов, чем машина с ДВС, но потребляет электроэнергию, а для ее получения все еще применяются углеводороды. Так, эксперимент Volkswagen показал, что в Германии электрокар будет косвенно производить больше CO2, чем современный дизельный аналог. В странах с большей долей возобновляемых источников энергии результат будет лучше, но не существенно.
Другие исследования показывают, что в среднем при производстве бензинового авто генерируются выбросы, равнозначные 5,6 т CO2. В случае с электрокаром показатель уже составляет 8,8 т — и половина вырабатывается в процессе производства аккумуляторов. Решить проблему могут новые технологии, которые минимизируют углеродный след и позволят выпускать более долговечные батареи с использованием экологичных материалов.
Экономика инноваций
Как крупные бренды переходят на производство электромобилей
Но в регионах, в которых возобновляемые источники энергии пока не распространены, EV вряд ли получат широкое распространение в ближайшие годы. Это касается России и ряда других стран, например, Мексики, Японии и Австралии.
Современные достижения в использовании водорода, как автомобильного топлива
Технологии водородных топливных элементов развивают такие крупные автомобильные концерны, как Toyota, Nissan, Honda, BMW, Ford и General Motors. Причем производители разошлись во мнении замены традиционного двигателя внутреннего сгорания на электромотор или нет. Дело в том ,что водород как топливо можно использовать и для двигателей внутреннего сгорания, и для создания электричества и накопления его в аккумуляторных батареях, которые потом будут питать электродвигатель автомобиля.
Путем применения электромотора пошла японская компания Toyota. Она уже выпускает серийный автомобиль Toyota Mirai, силовая установка которого состоит из водородных топливных элементов, аккумуляторных батарей и электродвигателя. Запаса хода такого водородного серийного автомобиля составляет до 400 километров. Подобную силовую установку немецкий автомобильный концерн BMW разрабатывал для представительского седана 7-Series в середине 2000-х годов, но потом отказался от такой затеи.
Выводы
Преимущества примерно равны недостаткам, поэтому перспектива использования водородной энергетики в будущем неоднозначна. Никто не может заявить со 100-процентной уверенностью, что будет в дальнейшем. Учёные разделились на два лагеря.
Первые утверждают, что в ближайшем будущем энергетика на природном материале станет популярной и найдёт своих клиентов. Сейчас найден дешёвый аналог добычи водорода – из воды. Осталось лишь создать устройства, с помощью которого будет осуществляться получение. Этот вопрос легко решаем, и инженеры уже ищут, чем ответить на такую задачу.
Второй лагерь учёных говорит, что использовать водород как элемент для энергетики нельзя. При его распространении мир будет на грани катастрофы. Водород – взрывоопасный элемент. Никто не знает, что можно ожидать от него в следующий момент. Как поведёт себя сам элемент при такой добыче.
Чёткого мнения нет ни в первом случае, ни во втором. Все разговоры учёных строятся лишь на догадках и гипотезах, которые пока не нашли своего практического подтверждения.