Роторный двигатель и почему сняли с конвейера мазду rx-8

Конструкция роторного двигателя

Поскольку РПД и классический поршневой мотор являются двигателями внутреннего сгорания, было бы логичным предположить, что и система впрыска ТВС, а также система зажигания у них схожи. Так оно и есть, но строение самих силовых агрегатов кардинально разное.

Устройство роторного двигателя включает следующие основные конструктивные элементы:

  • собственно ротор;
  • статор, в роли которого выступает корпус мотора;
  • приводной (выходной) вал.

Здесь используется классическая компоновка: вращающийся ротор находится внутри статора. Геометрия ротора предполагает наличие трёх выпуклостей, которые, по существу, являются аналогами поршня. Углубление в этих выпуклостях способствует повышению скорости вращения за счёт формирования завихрений отработанных газов. Каждая выпуклость комплектуется двумя кольцами, внутри которых формируются полости, представляющие собой камеры сгорания.

Одной из самых важных элементов ротора считается расположенное примерно посередине вала зубчатое колесо. Оно входит в зацепление с шестерней, располагаемой напротив на корпусе мотора. Эта зубчатая пара и является той компонентой, которая формирует направление и, разумеется, траекторию движения самого ротора.

Корпус РДВС выполнен в виде овала, что резко контрастирует с внешностью традиционного поршневого двигателя. Сделано это для того, чтобы все вершины ротора (напомним, их всего три) постоянно контактировали со стенками статора. Посредством такой экзотической геометрии достигается формирование в любой момент времени трёх камер сгорания, полностью герметичных и целиком изолированных от влияния соседний полостей. Впускная система также необычна: вместо клапанного механизма используются специальные порты впуска/выпуска, первый из которых непосредственно ведёт к дросселю, второй – к выхлопной системе, тоже напрямую, без каких-либо промежуточных конструктивных элементов.

Выходной вал ротора абсолютно не похож на коленвал поршневого ДВС. Да, на нём присутствуют эксцентрики в виде выступов специальной формы, расположенных на валу с определённым смещением относительно осевой линии. Но они служат для сопряжения с роторами (их у двигателя бывает несколько). Каждый отдельный ротор, вращаясь, воздействует на свой кулачковый эксцентрик, усиливая крутящий момент выходного вала.

Вот так необычно устроен роторный двигатель. Следует упомянуть ещё об одной его конструктивной особенности: он собирается в заводских условиях послойно. Наиболее распространены двухроторные силовые агрегаты, у которых имеется пять таких слоёв. В качестве крепёжных элементов используются болтовые соединения, располагаемые по кругу каждой секции.

Система охлаждения роторных силовых агрегатов устроена таким образом, что ОЖ доставляется во все активные элементы конструкции. Подшипники с сальниками расположены в противоположных крайних секциях, во внутренних сегментах установлены роторы. В центральных сегментах расположены впускные порты, выпускные же размещены с обоих краёв корпуса.

Способы подключения

Теперь стоит рассмотреть способы подключения асинхронного двигателя к бытовой сети. Всего 4 и их можно комбинировать!

С конденсатором

Схема подключения электродвигателя на 220в через конденсатор самая популярная, ведь так гасятся поступающие пульсации и токи. Получается тот самый плавный пуск, который не дает движку быстро «умереть».

Для сборки понадобится:

  1. Пускатель – очень желательно. С ним работать будет комфортнее и безопаснее.
  2. Рабочий конденсатор.
  3. Пусковой конденсатор.

Сама схема выглядит вот так:

В пускатель идет сетевой ток 220. Затем он идет в тумблер (нужен, как доп.защита от случайного пуска + экстренное выключение).

Параллельно подключается 2 конденсатора: рабочий и пусковой. Емкость первого рассчитывается по этой формуле.

Схема подключения двигателя 380в на 220в через конденсатор выглядит так.

С реверсом

Подключение двигателя с реверсом пригодится, если вы собираете, например, токарный станок по дереву. Сделать обратный ход не сложно, нужно лишь поменять местами пары «фаза-сеть» и «фаза-конденсатор».

Справится с этим переключатель-пакетник однополюсного типа.

Без конденсатора

Если не планируется подключение конденсатора к двигателю или его нет, то можно обойтись и так. Для этого понадобится транзисторный ключ.

Схема без конденсатора для электродвигателя выглядит так как на фото выше, а работает следующим образом:

  1. Напряжение из сети подается на 2 входные точки.
  2. На третий вход напряжение идет из связки конденсатор-резистор (R-C), что задает время.
  3. Между 2 резисторами R устанавливается переключатель, чтобы регулировать сдвиг фазы.
  4. Транзистор VS1, при наполнении конденсатора, открывает ключ VS2. Получается, что ток двигается плавно и не происходит пульсаций.

«Звезда треугольник»

Как было сказано, «инвертировать» напряжение из 380 на 220 можно двумя разными схемами. Иногда может понадобится переключатель между треугольником и звездой, если хочется сохранить плавность работы, не теряя мощности.

В целом, схема сложная, ведь используется 3 пускателя! Но иногда без нее никуда, поэтому вот инструкция:

  1. На первый пускатель кидают сетевое напряжение.
  2. Ко второму подключается обмотка.
  3. Оставшиеся контакты соединяются с первыми двумя пускателями.
  4. После этого обмотка со второго пускателя соединяется со всеми фазными контактами через треугольник.
  5. Если включить в работу третий пускатель, выводы расцепляются и получается звезда.

О том, как из звезды переходить на треугольник, можно посмотреть в этом видео:

Роторный двигатель ВАЗ

Все знают, что такие моторы в свои годы использовал японский производитель «Мазда». Однако мало кому известен тот факт, что РПД применялся и в Советском Союзе на ВАЗовской «Классике». Разрабатывался такой мотор по приказу министерства для спецслужб. ВАЗ-21079, оснащенный таким двигателем, являлся аналогом известной черной «Волги-догонялки» с восьмицилиндровым мотором.

Разработки роторно-поршневого двигателя для ВАЗ начались еще в середине 70-х. Задача была не из легких – создать роторный мотор, который будет превосходить по всем показателями традиционный поршневой ДВС. Разработкой нового силового агрегата занимались специалисты авиационных предприятий Самары. Начальником сборочно-конструкторского бюро был Борис Сидорович Поспелов.

Разработка силовых агрегатов шла одновременно с изучением роторных моторов зарубежных образцов. Первые экземпляры не отличались высокими эксплуатационными показателями, и в серию они не пошли. Несколько лет спустя были созданы несколько вариантов РПД для классического ВАЗа. Лучшим из них был признан мотор ВАЗ-311. Этот двигатель имел такие же геометрические параметры, как и японский мотор 1ЗВ. Максимальная мощность агрегата составляла 70 лошадиных сил. Несмотря на несовершенность конструкции, руководством было принято решение о выпуске первой промышленной партии РПД, которые устанавливались на служебные автомобили ВАЗ-2101. Однако вскоре обнаружилась масса недоработок: мотор породил волну рекламаций, разразился скандал и численность работников конструкторского бюро существенно сократилась. Из-за частых поломок, первый роторный двигатель ВАЗ-311 был снят с производства.

Но на этом история советского РПД не заканчивалась. В 80-х годах инженерам все же удалось создать роторный мотор, который существенно превосходил характеристики поршневого ДВС. Так, это был роторный двигатель ВАЗ-4132. Агрегат развивал мощность в 120 лошадиных сил. Это дало автомобилю ВАЗ-2105 превосходные динамические характеристики. С этим двигателем машина разгонялась до сотни за 9 секунд. А максимальная скорость «догонялки» составляла 180 километров в час. Среди основных преимуществ стоит отметить высокий крутящий момент двигателя, доступный на всем диапазоне оборотов и высокую литровую мощность, которая была достигнута без какой-либо форсировки.

В 90-х годах на АвтоВАЗе занялись разработкой нового роторного двигателя, который должен был устанавливаться на «девятку». Так, в 1994 м году на свет вышел новый силовой агрегат ВАЗ-415. Мотор имел рабочий объем в 1300 кубических сантиметров и две камеры сгорания. степень сжатия каждой составляла 9,4. Данная силовая установка способна раскручиваться до десяти тысяч оборотов. При этом мотор отличался небольшим расходом топлива. В среднем, агрегат потреблял 13-14 литров на сотню в смешанном цикле (это неплохой показатель для старого по сегодняшним меркам роторного ДВС). При этом двигатель отличался малой снаряженной массой. Без навесного оборудования он весил всего 113 килограмм.

Расход масла у двигателя ВАЗ-415 составляет 0,6 процента от удельного расхода топлива. Ресурс ДВС до капитального ремонта – 125 тысяч километров. Мотор, установленный на «девятку», показывал неплохие динамические характеристики. Так, разгон до сотни занимал всего девять секунд. А максимальная скорость – 190 километров в час. Также были экспериментальные образцы ВАЗ-2108 с роторным мотором. Благодаря меньшему весу, роторная «восьмерка» разгонялась до сотни всего за восемь секунд. А максимальная скорость в ходе испытаний составила 200 километров в час. Однако в серию эти моторы так и не поступили. На вторичном рынке и на разборках найти их тоже нельзя.

Принцип работы роторного двигателя

Роторный мотор работает по схеме, отличающейся от технологии, характерной для стандартного ДВС с поршнями в качестве основного подвижного элемента. Кроме того, силовые агрегаты имеют различную конструкцию.

По аналогии с поршневым двигателем принцип действия РПД базируется на преобразовании энергии, получаемой в результате сгорания воздушно-топливной смеси. В первом случае давление, создаваемое в цилиндрах при сжигании горючего, вынуждает поршни двигаться. Возвратно-поступательные движения шатун и коленчатый вал преобразуют во вращательные, которые заставляют крутиться колеса.

Внутри цилиндра, где располагается ротор, происходят следующие процессы:

  1. воздушно-топливная смесь сжимается;
  2. впрыскивается очередная доза горючего;
  3. поступает кислород;
  4. топливо воспламеняется;
  5. сгоревшие элементы направляются в выпускное отверстие.

Треугольный ротор закрепляется на особом механизме. При запуске двигателя он выполняет специфические движения, не вращаясь, а как бы бегая внутри овальной капсулы.

В них наблюдаются такие процессы:

  • в первую полость через впускное окно подается горючее и всасывается кислород, при перемешивании образующие воздушно-топливную смесь;
  • во втором отсеке происходит сжатие и воспламенение;
  • продукты сгорания вытесняются в выпускное отверстие из третьей камеры.

Схема устройства РПД

В конструкцию РПД входят следующие элементы:

  1. Ротор с 3 выпуклыми гранями, выполняющими функции поршня. За счет углублений увеличивается скорость вращения, образуется больше пространства для воздушно-топливной смеси.
  2. Пластины из металла, закрепленные на вершинах каждой из сторон. Их предназначение – формирование полостей в корпусе, где происходят рабочие процессы силовой установки.
  3. 2 металлических кольца на гранях ротора служат для образования камерных стенок.
  4. В центре конструкции располагаются 2 больших колеса с большим количеством зубьев, вращающихся вокруг шестерней меньшего диаметра. Зубчатая передача соединена с приводным устройством, закрепленном на выходном валу. Направление и траектория движения внутри камеры зависят от этого соединения.
  5. Корпус ротора. Изготавливается в форме условного овала. Такая конфигурация обеспечивает постоянный контакт вершин треугольника со стенками капсулы, создавая 3 изолированных объема газа.
  6. Окна впрыска и выхлопа. Клапанов не имеют. Впускное отверстие соединено с системой подачи топлива, а выпускное – с выхлопной трубой.
  7. Выходной вал с эксцентриковой конструкцией. На нем расположены особые кулачки, смещенные относительно осевой линии. На каждый из этих выступов надевается отдельный ротор. Благодаря несимметричной установке, происходит неравномерное распределение силы давления. Это приводит к образованию крутящего момента, вызывающего стабильную работу силовой установки, основанную на оборотах вала.

5 основных слоев, скрепленных по окружности длинными шурупами, составляют стандартную конструкцию двухроторного двигателя. При этом создаются условия для свободной циркуляции охлаждающей жидкости внутри системы. Движущиеся части, представленные 2 роторами и эксцентриковым выходным валом, располагаются между 2 стационарными участками.

Мощность и ресурс

По сравнению со стандартным ДВС, роторный агрегат характеризуется большей удельной мощностью, которая измеряется в л.с./кг. Это объясняется меньшей массой подвижных деталей, составляющих конструкцию РПД. Обоснование – отсутствие газораспределительного механизма, клапанной системы, коленчатого вала и шатунов.

Кроме того, однороторный двигатель преобразует энергию сгорания топлива во вращательное движение на протяжении ¾ тактов рабочего цикла. Для поршневых моторов этот показатель снижен до ¼.

До 2011 г. только японские промышленники концерна «Мазда» выпускали автомобили с двигателями роторного типа. А потом и они сняли агрегат с производства. Вероятная причина – заниженный ресурс силовой установки. До первого капитального ремонта транспортные средства проезжают всего 100 тыс. км. При аккуратном стиле вождения и бережном отношении пробег увеличивается до 200 тыс. км.

Уязвимое звено – уплотнители ротора, страдающие от перегрева и высоких нагрузок. Кроме этих факторов на них оказывают негативное влияние детонация и износ подшипников, расположенных на эксцентриковом валу.

Преимущества и недостатки

У такого мотора есть свои «плюсы» и «минусы».

К преимуществам можно отнести:

  1. Мало подвижных элементов. Роторный двигатель содержит намного меньше механизмов и узлов, чем поршневой. В роторном – три главных движущих элемента: два ротора и вал, а в самом простейшем поршневом моторе минимум 45 движущихся элементов. Так как в РПД минимальное количество механизмов, то и надежность, соответственно, выше.
  2. Вибрация. Все элементы РПД совершают плавную непрерывную работу и вращаются в одном направлении, тогда как в поршневом моторе движение постоянно меняется.
  3. Компактность. Двигатель имеет небольшой вес и габариты.

К недостаткам относятся:

  1. Потребление топлива. Роторному мотору требуется больше ГСМ.
  2. Высокая стоимость. Изготовление отличается сложностью, высокой точностью производства, дорогого оборудования, что способствует удорожанию.
  3. Частые перегревы. Данные двигатели в силу своей конструкции подвержены к перегреву, что приводит к «закипанию».
  4. Невысокий ресурс. Из-за постоянных перепадов давления, мотор вырабатывает ресурс не более 130-150 тыс. км.

Учитывая недостатки и преимущества роторного мотора, автолюбители обращают внимание и на вождение автомобиля, считая его сложным и непривычным. Прогресс не стоит на месте и, возможно, у РПД есть будущее

Его особенностью является то, что двигатель может работать на газе и водороде, а это откроет ему перспективу в будущем

Прогресс не стоит на месте и, возможно, у РПД есть будущее. Его особенностью является то, что двигатель может работать на газе и водороде, а это откроет ему перспективу в будущем.

Использование в автомобилях и мотоциклах

Хотя роторные двигатели в основном использовались в самолетах, некоторые автомобили и мотоциклы были построены с роторными двигателями. Возможно, первым из них был мотоцикл Millet 1892 года. Знаменитым мотоциклом, выигравшим множество гонок, был Megola с роторным двигателем внутри переднего колеса. Другой мотоцикл с роторным двигателем был Чарльз Redrup «ы 1912 Redrup Радиальная , который был трехцилиндровый 303 куб.см роторный двигатель установлен на ряд мотоциклов по Redrup.

В 1904 году двигатель Барри , также разработанный Редрупом, был построен в Уэльсе: вращающийся двухцилиндровый оппозитный двигатель весом 6,5 кг был установлен внутри рамы мотоцикла.

Немецкий мотоцикл Megola начала 1920-х годов использовал пятицилиндровый роторный двигатель в конструкции передних колес.

В 1940-х годах Кирилл Пуллин разработал Powerwheel , колесо с вращающимся одноцилиндровым двигателем , сцеплением и барабанным тормозом внутри ступицы, но оно так и не пошло в производство.

Особенности роторного двигателя

В данном видео, вам расскажут об истории двигателей, а так же чем они так примечательны.

Корпус двигателя отличается овальной формой.Форма самой камеры сконструирована таким образом, чтобы все вершины ротора контактировали со стеной камеры.

Они образуют три разделенные между собой объемы газа. В корпусе происходит процесс внутреннего сгорания. Свободное пространство корпуса делится на четыре части для впуска, сжатия, рабочего такта и выпуска.

Важно отметить, что порт впуска и выпуска находятся в корпусе. Клапаны в порте отсутствуют

Впускной порт напрямую соединен с дросселем, а выпускной порт – с выхлопной системой.

Выходной вал отличается закругленными выступами-кулачками, которые эксцентрично расположены. С каждым из выступов сопряжен ротор. Выходной вал представляет собой аналог коленчатого вала в поршневом движке.Вращаясь, ротор толкает выступы-кулачки.

Поскольку они расположены несимметрично, ротор давит на них с силой, которая заставляет вращаться выходной вал.

Роторный двигатель собирают слоями.Движок с двумя роторами собирается пятью слоями, которые крепятся длинными болтами, расположенными по кругу.

Через все элементы конструкции проходит охлаждающая жидкость. Два крайних слоя обладают уплотнениями и подшипниками для выходного вала.

Кроме того, они изолируют части корпуса двигателя, в которых находятся роторы. Внутренняя поверхность каждой части является гладкой и это обеспечивает должное уплотнение роторов.

Следует отметить, что впускной порт присутствует в крайних частях. Овальный корпус ротора и выпускной порт расположен в следующем слое. Здесь и установлен ротор.

В центральной части присутствуют впускные порты – для каждого ротора отведен один такой порт.

Роторный движок Mazda RX-8

Центральная часть разделяет между собой роторы, именно поэтому ее поверхность внутри является совершенно гладкой.

Принцип работы роторно-поршневого двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал. Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта. Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала. Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал. Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе.

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт. Сжатие топливно-воздушной смеси в роторном двигателе Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси. В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Корпус роторного двигателя

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.А теперь мы расскажем о рабочих камерах корпуса роторного двигателя.

Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротораВыпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Устройство и принцип работы

Принцип работы роторного и поршневого двигателей идентичен: энергии горения преобразовывается в механическую работу. Различие заключается в способе преобразования энергии. Основным рабочим элементом в роторном двигателе (РПД) является ротор, который совершает вращательное движение, а в поршневом – поршни, совершающие возвратно-поступательные движения. Роторный двигатель получил название от части мотора – ротора. Так как ротор движется, мощность передается на сцепление и коробку переключения передач.

Роторный двигатель внутреннего сгорания (двигатель Ванкеля) не имеет ГРМ и КШМ, которыми оснащены поршневые двигатели. Их функции исполняют следующие основные детали: эксцентриковый вал, роторы, выполняющие роль поршней, неподвижные шестерни, задающие траекторию вращения роторов. Устройство роторного двигателя состоит из промежуточного корпуса, статоров, образующих рабочие камеры, переднего и заднего корпуса, которые закрывают рабочие камеры, также на них зафиксированы неподвижные шестерни. Весь двигатель стягивается длинными болтами. Двухсекционный роторно-поршневой ДВС означает, что в двигатели два ротора.

Модель роторного двигателя

Чтобы понять, как работает двигатель, следует рассмотреть один рабочий цикл:

  1. 1-й такт – впуск. Ротор, вращаясь, увеличивает размер рабочей камеры, образованной формой статора и ротора. Создается разряжение, которое засасывает топливно-воздушную смесь посредством впускного окна. В конце такта ротор перекрывает впускное окно.
  2. 2-й такт – сжатие. Ротор продолжает вращение, но размер камеры уже уменьшается, вследствие чего сжимается смесь топлива и воздуха. В конце такта с помощью одной или нескольких свечей зажигания происходит воспламенение сжатой смеси. Свечи зажигания не выпирают, а утоплены в статоре. В стенках находятся выемки, образующие объем камеры сгорания.
  3. 3-й такт – рабочий ход (расширение). Протекает пик горения, в результате чего в камере увеличивается температура и давление расширяющихся газов. Ротор, воспринимая давление, раскручивает эксцентриковый вал, чем преобразовывает тепловую энергию в механическую работу.
  4. 4-й такт – выпуск. Ротор открывает выпускное окно и выдавливает из уменьшающейся камеры отработавшие газы.

Когда рабочий цикл закончен, начинается и повторяется новый.

Схема циклов РПД

С каждой из трех сторон ротора протекает свой такт, а это значит, что такт расширения проходит не каждые 360 градусов вращения, а каждые 120 градусов вращения или каждый оборот эксцентрикового вала.

Видео о РПД Ванкеля:

Возможен ли самостоятельный ремонт роторного мотора

Ответ, безусловно, будет скорее отрицательный. И дело не в том, что таких автомобилей в мире очень мало – их конструкция настолько уникальна, что что-либо менять внутри самому не представляется возможным.

Конечно, с заменой свечей дела обстоят не так плохо, однако не для первых моделей. У них свечи оказались спрятанными в стационарный вал (подвижными были не только ротор, но и корпус двигателя). Со временем конструкторы перешли к более простому варианту, а свечи начали устанавливать на стенки неподвижного статора, напротив портов впрыска/выпуска.

Большинство других ремонтных работ самостоятельно произвести практически нереально.

Отметим, что классический мотор Ванкеля имеет примерно на 40% меньше комплектующих, чем поршневой двигатель, но это детали, не имеющие аналогов.

Что ещё можно сделать своими руками? Например, поменять вкладыши приводного вала. Эту операцию выполняют, когда они стерлись настолько, что местами проступает медь. Для этого нужно демонтировать шестерни, поменять вкладыши и напрессовать зубчатые колёса на штатное место. Одновременно можно проверить состояние сальников и при необходимости установить новые.

Если при выполнении ремонтных работ демонтаж пружин маслосъемных колец, следует запомнить, где какие стоят, поскольку по форме передние не совпадают с задними. При необходимости можно выполнить замену торцевых пластин, которые тоже не совместимы друг с другом и имеют соответствующую маркировку.

При замене угловых уплотнителей начинать нужно с передней части ротора. Рекомендуется использовать смазку зелёного цвета от Castrol – это поможет зафиксировать уплотнители, пока вы будете заниматься сборкой остальных деталей. Тыльные угловые уплотнители меняются уже после установки приводного вала. При установке прокладок не забудьте смазать их подходящим герметиком. Апексы следует устанавливать в уплотнители после того, как поместите ротор в корпусе. Последнее, что нужно сделать – смазать прокладки тыловой и фронтальной крышек статора перед их установкой.

Подведем итоги

С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс, необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.

По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.

Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).

Подведем итоги

С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс, необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.

По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.

Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).