Разберешься что такое дифференциал в автомобиле

Самоблокирующийся дифференциал

Как понятно из названия, решает когда «прийти на помощь», сам. Он имеет разновидности конструкции, разберем его отдельно.

Дифференциал повышенного трения или еще можно услышать — LSD, но все это названия одного механизма. В зависимости от ситуации и необходимости, может работать, как обычный дифференциал, а может жестко себя блокировать, если появиться разность в:

  • угловых скоростей;
  • разность в крутящем моменте.

Вот по этому принципу и различают особенности его конструкции.

1. Дисковый механизм

Разновидностей имеет массу, но принцип работы один — обеспечить блокировку во время плохого сцепления, на льду или яме, одного из колес, по средствам фрикционных дисков. Таких дисков целый пакет, одни крепятся к полуоси, а другие к корпусу дифференциала. Во время обычной поездки диски разжаты и на движение колес не влияют.

1 — корпус; 2,4 — шестерни полуосей; 3,5 — наборы фрикционных дисков; 6 — ось блока сателлитов; 7 — раздвижные полукольца.

При потере сцепления — фрикционные диски полуосей, и дифференциала сжимаются и крутящий момент передается от дифференциала на полуось напрямую, без участия сателлитов. Т.е. крутящий момент в основном перейдет на ту полуось, которая вращается медленнее. А все, благодаря силе трения, происходящей между фрикционными дисками.

Если в машине предусмотрен гидравлический привод, то степень сжатия будет переменной, а если установлен пружинный механизм — регулярная. Применяется как в качестве межколесного дифференциала, в основном в спортивных авто, либо между осями у полноприводных внедорожников.

Видео-урок по принципу работы блокировки дифференциала

2. Вязкостная муфта (вискомуфта)

Используется крайне редко, из-за своих ощутимых недостатков:

  • несовместимость с некоторыми ABS;
  • частые случаи перегрева.

Т.к. вискомуфта имеет внушительные размеры, то и применяется лишь между осями. Правда, случаются прецеденты, установки ее место дифференциала при полном автоматическом приводе. Название она свое получила из-за особенности работы.

Набор перфорированных дисков, помещен в супер вязкую жидкость (силикон), и запечатан в герметичный контейнер. Так же как и в случае с дисковым дифференциалом, пакет дисков поделен на две части, одни на ведущем вале, другие на ведомом. Если ведущий вал набирает обороты, прикрепленные к нему диски, также ускоряются. При этом они взбивают силикон, который затвердевает и блокируется с дисками ведомого, происходит блокировка дифференциал. Когда скорость вращения стабилизируется — жидкость вернется к исходному состоянию.

3. Червячный (винтовой) механизм

Имеет свойство частично блокировать дифференциал в зависимости от величины крутящего момента. Внутри механизма, вместо привычных сателлитов, располагается червячная передача, замысловатой конструкции. Придумали её еще в 1958 году, а актуальна она и по сей день. Самые популярные Torsen T-1, Torsen T-2 и Quaife.

Особенность данного типа блокировки в том, что процесс переноса крутящего момента возможен лишь от ведущей шестерни (самого червяка) к ведомой (полуосевой), из-за больших сил трения. Как это работает? В разных конструкциях T-1 или T-2, особенности построения червячного механизма, отличаются только расположением сателлитов. В Т-1 поперечно корпусу, а в Т-2 — продольно. Конструкция Torsen обоих поколений настолько чувствительна, что колесо, попавшее на лёд, не успевает физически пробуксовать. Широкое применение они нашли как в межосевых так и в межколесных дифференциалах.

4. Электронная блокировка

По сути, данный вид не является дополнительным конструктивным элементом дифференциала и не блокирует его. Всю работу на себя берет тормозная система, под управлением антипробуксовочной системы и запускается по средствам датчика. Реагирует электронная блокировка на изменение в угловой скорости ведущей оси.

Принцип действия основывается на управлении дифференциалом по средствам программного обеспечения. Если колесо теряет сцепление, возникает в тормозной системе давление, и оно замедляется, увеличивая тем самым тяговую мощность. Крутящий момент, в этом случае, перераспределяется на другое колесо.

Свободный дифференциал (Open Differential).

Суть его работы.

Разделяет крутящий момент двигателя на две оси, каждая из которых способна вращаться с различной скоростью.

Недостатки.

При потери сцепления колеса с дорогой крутящий момент на противоположном колесе тоже снижается (падает). В худшем варианте, у застрявшего автомобиля одно колесо будет свободно вращается, в то время, как противоположенное с лучшим сцеплением не сможет просто передать поверхности (дороге) достаточно крутящего момента, чтобы сдвинуть автомобиль с места.

Современные системы управления тягой компенсируют это, путем применения тормозов к потерявшему сцепление колесу. Но данный подход к проблеме помогает лишь отчасти, более сложный дифференциал, как правило действует быстрее и он более эффективен, чем тот же стандартный тип такого механизма.

На каких автомобилях его можно обнаружить.

Устанавливается на большинство автомобилей у которых «отсутствуют претензии» на нехватку большой мощности (они достаточно мощные), или у которых «отсутствуют амбиции» к любому бездорожью (внедорожники), а также на семейные седаны, на кроссоверы, на мини-вэны, на малолитражные машины, и т.д.

Устройство дифференциала и принцип работы

Начнем с первого типа. Конический дифференциал зачастую выполнят функцию межколесного дифференциала. Цилиндрический дифференциал обычно встречается на полном приводе и ставится между осями. Червячный дифференциал универсален, что позволяет ставить механизм как между колесами, так и использовать в качестве межосевого.

При этом наиболее распространенным является конический дифференциал, а базовые элементы его конструкции активно используются и в устройстве других типов дифференциалов. По этой причине рассмотрим устройство и принцип работы конического дифференциала в качестве примера.

Итак, конический дифференциал, как уже было сказано выше, фактически является планетарным редуктором. В конструкцию включены полуосевые шестерни и сателлиты, которые находятся в корпусе (чашке дифференциала).

Сами сателлиты, которые реализуют функцию планетарной шестерни, позволяют соединить корпус и полуосевые шестерни. С учетом того, какую величину крутящего момента нужно передать, в конструкцию дифференциала могут интегрировать 2 или 4 четыре сателлита.

Солнечные (полуосевые шестерни) осуществляют передачу крутящего момента на ведущие колеса автомобиля. Передача происходит через полуоси, соединение полуосевых шестерен и полуосей выполнено через шлицы.

В первом случае симметричный дифференциал позволяет распределять крутящий момент по осям в равной степени, причем независимо от величины угловых скоростей ведущих колес.

Такой дифференциал используют для установки между колесами (симметричный межколесный дифференциал). Несимметричный дифференциал способен разделять крутящий момент в том или ином соотношении. Данная особенность позволяет использовать его между ведущими осями.

Теперь перейдем к принципам работы дифференциала. Прежде всего, симметричный дифференциал работает в трех основных режимах. Первый режим – движение по прямой, второй — движение в повороте, третий — езда по дорогое с плохим сцеплением (грязь, лед и т.д.).

Когда автомобиль движется прямо, колеса испытывают равнозначное сопротивление. Происходит передача крутящего момента от главной передачи на корпус дифференциала. Вместе с корпусом перемещаются сателлиты, которые, в свою очередь, осуществляют передачу момента на ведущие колеса.

Однако если машина заходит в поворот, колесо, которое находится ближе к центру (внутреннее ведущее) нагружается сильнее и начинает испытывать большее сопротивление сравнительно с наружным колесом (дальним от центра поворота).

В результате роста нагрузки внутренняя полуосевая шестерня несколько замедляет вращение, а это приводит к тому, что сателлиты начинают вращаться вокруг своей оси. Такое вращение сателлитов приводит к увеличению частоты вращения наружной полуосевой шестерни.

На практике возможность движения ведущих колес с разными угловыми скоростями делает возможным прохода поворота без пробуксовок. Кстати, крутящий момент все равно распределяется на ведущие колеса равнозначно.

Если же автомобиль забуксовал в грязи, в снегу или на льду, одно колесо испытывает большее сопротивление, чем другое. В этом случае дифференциал (благодаря своей конструкции) инициирует ускоренное вращение буксующего колеса, тогда как другое колесо замедляется.

Выходом из ситуации становится необходимость увеличения крутящего момента на колесе, которое не буксует. Для этого дифференциал необходимо заблокировать. По этой причине внедорожники имеют дополнительную возможность блокировки дифференциала, тогда как легковые авто и даже некоторые современные бюджетные «паркетники» лишены такой функции.

Устройство и принцип работы механической коробки передач. Виды механических коробок (двухвальная, трехвальная), особенности, отличия

Автоматическая коробка передач (АКПП, АКП) «классического» типа с гидротрансформатором: устройство и принцип работы. Плюсы и минусы гидромеханической АКПП.

Передачи включаются туго или не включаются скорости на механической коробке передач: основные причины неисправности и возможные неполадки.

Коробка передач «механика»: основные плюсы и минусы данного типа КПП, принцип работы механической трансмиссии автомобиля (МКПП).

Стыковка коробки передач и двигателя автомобиля

Соединение механической и автоматической трансмиссии с ДВС: на что обратить внимание, особенности и нюансы

Что такое КПП в автомобиле: назначение коробки передач, виды коробок передач, принцип работы, отличительные особенности трансмиссий.

Виды дифференциалов

За годы эволюции это устройство менялось и совершенствовалось. Так что теперь в автомобилестроении используют различные виды дифференциалов, в зависимости от того, на какие нагрузки рассчитан автомобиль, для каких дорожных условий предназначен, какую цель ставили перед собой конструкторы.

  1. По особенностям конструкции различают конический, цилиндрический и червячный типы. Название зависит от того, какой тип передачи используется для вращения полуосей. В настоящее время самый распространенный вид – конический. Конический дифференциал Цилиндрический дифференциал Червячный дифференциал
  2. По распределению усилия на полуоси различают симметричный и несимметричный. В первом случае количество зубцов на шестернях равное, получаем симметричное распределение вращения. При неравном количестве зубцов усилие распределяется несимметрично, что выгодно для внедорожников высокой проходимости.

Виды блокировки дифференциала. Система блокировки разрабатывалась для внедорожников, для которых пробуксовка любого колеса означает полную остановку автомобиля. На видео, ниже, подробно рассказано о системах блокировки.

Существует три основных типа блокировки.

  1. Ручная блокировка дифференциала – это система, при которой водитель самостоятельно включает и выключает блокировку по своему усмотрению. Возле водительского места находится рычаг или кнопка управления блокировкой, с помощью которых принудительно останавливается вращение сателлитов вокруг свой оси. Фактически, дифференциал начинает работать так же, как при движении по прямой, распределяя усилие на обе полуоси поровну. При этом ухудшается управляемость, ведь повороты с заблокированным дифференциалом выполнить крайне сложно.
  2. Автоматическая блокировка или самоблокировка – система, которая облегчает управление автомобилем, снимая с водителя необходимость самостоятельно блокировать дифференциал. Самоблокирующийся тип называют еще дифференциалом повышенного трения.
  3. Электронная блокировка – это, по сути, имитация работы дифференциала, используемая в антипробуксовочных электронных системах. При необходимости забуксовавшее колесо принудительно замедляется тормозом, после чего дифференциал перераспределяет усилие, давая больше нагрузки на вторую полуось, которая имеет лучшее сцепление с дорогой.

Самоблокирующийся делятся на два основных типа.

  1. Тип Torque – блокировка, срабатывающая от разницы крутящего момента на полуосях. При пробуксовке срабатывают гасители скорости, подтормаживающие ту полуось, скорость вращения которой выше.
  2. Тип Speed Sensitive – блокировка с помощью вискомуфты, которая срабатывает, если одна из полуосей движется быстрее другой.

На сегодняшний день существует несколько видов дифференциалов, используемых в современных автомобилях.

  1. Квайф (Quaife) – самая простая конструкция, главной особенностью которой является использование нескольких пар сателлитов, сцепляющихся между собой попарно. Благодаря возникающим силам трения механизм автоматически подстраивается под дорожные условия, правильно распределяя момент вращения при поворотах и пробуксовке.
  2. Вискомуфта – устройство блокировки, основанное на применении жидкости с переменной вязкостью. Чем выше скорость ее перемешивания (соотношение скоростей вращения левой и правой полуосей), тем выше вязкость жидкости, вплоть до полной блокировки контактных дисковых блоков. Вискомуфта устанавливается на кроссоверы и легковые автомобили, то есть она не рассчитана на условия жесткого бездорожья.

  3. Дисковая блокировка – конструкция с дополнительными коническими шестернями, муфтами и дисками. При разнице в скорости вращения полуосей разъединяются стыки между шестернями и система блокируется, после чего скорости вращения полуосей выравниваются.

  4. Полная блокировка (кулачковая) – это тип с ручной блокировкой из салона автомобиля. Несмотря на некоторые неудобства его продолжают использовать во внедорожниках и есть много поклонников именно этого типа блокировки.
  5. Торсен (Torsen) – агрегат комбинированного, коническо-червячного типа. Это один из самых мощных и надежных типов механизма, используемый для условий жесткого бездорожья. Принцип его работы подробно описан на видео, ниже.

Разновидности автомобильных дифференциалов

Помимо конического, цилиндрического и червячного, существуют и успешно используются следующие разновидности дифференциалов: дифференциал с полной блокировкой, дифференциал Торсен, дифференциал Квайф, вискомуфта.

Дифференциал с полной блокировкой

Дифференциалы этого типа чаще всего используются на грузовиках и внедорожниках. Их блокировка включается и отключается непосредственно из салона с помощью специальной клавиши водителем. Они используются для повышения проходимости автомобилей.

Межосевой дифференциал с блокировкой типа Torsen

Конструкция рабочего привода данной системы состоит из следующих единиц:

  1. корпус;
  2. правая полуосевая шестерня;
  3. левая полуосевая шестерня;
  4. сателлиты правой и левой полуосевых шестерен;
  5. выходные валы.

Стоит отметить, что дифференциал Torsen имеет наиболее совершенную конструкцию.

Принцип работы:

Межосевой блокируемый дифференциал Torsen состоит из ведомых и ведущих червячных колес, иначе называемых полуосевыми и саттелитами. В такой системе блокировка случается вследствие особенностей функционирования шестерен данного типа. В нормальном состоянии им задается определенное передаточное число. Если колеса имеют хорошее сцепление с поверхностью и движутся плавно, работа дифференциала происходит точно так же, как и у симметричного. Но как только происходит резкое увеличение момента, саттелит пытается начать движение в обратную сторону. Полуосевая червячная шестерня перегружается, и происходит блокировка выходных валов. При этом лишний крутящий момент двигателя переходит на другую ось. Максимальная степень перераспределения момента для дифференциалов Torsen – 75 на 25.

Наиболее известной разновидностью данной системы является Torsen Audi Quattro. Это один из самых популярных механизмов в конструкциях современных полноприводных автомобилей. Его неоспоримыми преимуществами являются широкий спектр переброса вращающего момента, мгновенная скорость срабатывания и отсутствие негативного влияния на тормозную систему. А вот к недостаткам можно отнести сложность конструкции со всеми сопутствующими последствиями.

Преимущества дифференциалов этой конструкции

Преимуществ у данной конструкции достаточно много. Данный механизм устанавливают за то, что точность его работы чрезвычайно высокая, при этом работает устройство очень плавно и тихо. Мощность распределяется между колесами и мостами автоматически – какое-либо вмешательство водителя не нужно. Перераспределение момента никак не влияет на торможение. Если дифференциал эксплуатируется корректно, то обслуживать его не нужно – от водителя требуется только проверять и периодически менять масло.

Именно поэтому многие водители ставят дифференциал “Торсен” на “Ниву”. Там также применена система постоянного полного привода и никакой электроники, поэтому нередко любители экстрима меняют штатный дифференциал на данный узел.

Недостатки

Есть и минусы. Это высокая цена, ведь внутри конструкция устроена достаточно сложно. Так как дифференциал работает на принципе терния, из-за этого повышается расход топлива. При всех преимуществах КПД довольно низкий, если сравнивать с похожими системами другого типа. Механизм имеет высокую предрасположенность к заклиниванию, а износ внутренних элементов довольно интенсивный. Для смазки нужны специальные продукты, так как при работе узла выделяется много тепла. Если на одной оси установлены разные колеса, то детали изнашиваются еще более интенсивно.

Дифференциалы Квайф

Отличительной особенностью дифференциалов этого типа является то, что сателлиты в них располагаются параллельно оси вращения корпуса (чаши), причем в два ряда. Кроме того, при функционировании этих агрегатов образуются силы трения, которые при необходимости автоматически осуществляют блокировку, повышают проходимость и силу тяги автомобиля. Чаще всего дифференциалы Квайф используются для тюнинга легковых автомобилей и внедорожников.

Функционирование этот типа дифференциала основано на том же принципе, что и работа гидротрансформатора. Чаще всего вискомуфты используются в автомобилях с полным приводом и используются для того, чтобы обеспечивать связь передних колес с задними по следующему принципу: если одни из них проскальзывают, то крутящий момент транслируется на другие, за счет чего и решается проблема пробуксовки. Конструктивно вискомуфта представляет собой цилиндр, в которой находится погруженный в вязкую жидкость пакет металлических дисков, имеющих перфорацию, и соединенных с валами (как ведущим, так и ведомым). В зависимости от температуры вязкость жидкости меняется, на чем и основывается принцип работы этого агрегата.

Главная передача

Главная передача предназначена для увеличения крутящего момента, передаваемого к ведущим колесам. Устройство ее, на первый взгляд, весьма просто — две шестерни. Одна, размером поменьше, является ведущей, вторая, побольше — ведомой. Но от конструкции главной передачи во многом зависят тягово-скоростные характеристики автомобиля и расход топлива.

Гипоидная передача

На заднеприводных автомобилях применяется гипоидная главная передача, так как крутящий момент нужно передать на ведущие колеса под углом 90 градусов. Почему применяется более сложная в изготовлении гипоидная передача, а не простая коническая? Да потому что у конической передачи ее простота является единственным преимуществом. А недостатков больше: шумность, низкая несущая способность, высокое расположение карданного вала (а, следовательно, и трансмиссионного туннеля в кузове автомобиля). В гипоидной передаче ось ведущей шестерни смещена относительно оси ведомой на величину гипоидного смещения. Поэтому карданный вал располагается ниже, что позволяет уменьшить высоту трансмиссионного туннеля. При этом снижается центр тяжести автомобиля, тем самым улучшая его устойчивость.

Зубья шестерен выполняются косыми или криволинейными. Благодаря тому, что в гипоидной передаче одновременно находится в зацеплении больше зубьев, чем в конической, обеспечивается ее плавная и бесшумная работа, повышается нагрузочная способность. Однако, из-за более плотного прилегания зубьев увеличивается опасность заклинивания, особенно при изменении направления вращения. Поэтому гипоидные передачи требуют высокой точности регулировки и применения специального трансмиссионного масла. В масла для гипоидных передач добавляются противоизносные и противозадирные присадки.

В переднеприводных автомобилях, где нет необходимости изменять направление передаваемого момента, в главной передаче применяются простые цилиндрические шестерни. Конструктивно главная передача устанавливается в общем картере с коробкой передач. Цилиндрические передачи просты в изготовлении, недороги, опасность задиров низка. Поэтому для их смазки в большинстве случаев применяется не специальное трансмиссионное масло, а моторное.

Как влияет передаточное число главной пары на тягово-динамические характеристики? Чем оно выше, тем быстрее происходит разгон, но максимальная скорость ниже. И, наоборот, с уменьшением передаточного числа автомобиль разгоняется медленнее, но достигает большей максимальной скорости. Значение передаточного числа для конкретной модели автомобиля подбирается с учетом характеристик двигателя, размера колес, возможностей тормозной системы.

Применение дифференциалов, их преимущества и недостатки

В тех автомобилях, которые имеют всего одну ведущую ось, устанавливается один дифференциал. Транспортные средства с двумя и более ведущими осями оснащаются дифференциалами, устанавливаемыми в каждую из них. В автомобилях с повышенной проходимостью, имеющих две ведущих оси, устанавливается три дифференциала: по одному на каждую из осей и один — между ними. В тех же транспортных средствах, которые имеют более двух ведущих осей, используются так называемые межтележечные дифференциалы.

Дифференциал как автомобильный механизм скоро отметит двухвековой юбилей, однако его конструкция за эти долгие годы хоть и совершенствовалась, но сохранила ключевые особенности. Что же такое дифференциал, и какую роль он выполняет в автомобиле?

1. Что такое дифференциал?

Д
ифференциал в автомобиле – это механизм, который позволяет передавать мощность и, следовательно, вращение от коробки передач к колесам, разделяя поток этой мощности на два, для каждого из колес одной оси, с возможностью изменять соотношение передаваемой к ним мощности, и, следовательно, позволяя колесам вращаться с разной скоростью. Проще говоря, дифференциал разделяет 100% мощности, передаваемой коробкой передач, на два потока для каждого из колес на одной оси, и эти потоки могут перераспределяться в зависимости от условий движений от 50:50 до 100:0.

2. Для чего нужен дифференциал?

Основное предназначение дифференциала – обеспечить возможность вращения колес на одной оси с разной скоростью с сохранением неразрывного потока крутящего момента

Для автомобиля это важно прежде всего в поворотах: ведь при движении по дуге колеса на внешней стороне поворота проходят больший путь, чем колеса на внутренней, а значит, должны вращаться с большей скоростью для сохранения стабильности машины

Если же колеса на оси будут соединены жестко, то внутреннее колесо в повороте будет пробуксовывать. Для заднеприводного автомобиля это повышает риск заноса, а для переднеприводного радикально ухудшает управляемость и контроль автомобиля в повороте. Таким образом, обеспечение свободного и независимого вращения колес на одной оси с сохранением постоянства передачи на них крутящего момента от двигателя было одной из принципиальных задач с момента создания автомобиля – и это задача была успешно решена.

3. Как устроен дифференциал?

Дифференциал являет собой частный случай планетарной передачи. Физически он обычно представляет собой набор из четырех шестерней, вращение к которым передается пятой – ведомой шестерней главной передачи, объединенной с корпусом дифференциала, выполняющим роль водила. Главная передача – это набор из двух шестерней: ведущая получает вращение от КПП и передает его ведомой. Ведомая же шестерня главной передачи передает вращение через корпус на шестерни-сателлиты, а они, в свою очередь, находятся в зацеплении с солнечными шестернями, жестко закрепленными на приводных полуосях колес.

Когда автомобиль движется по прямой, шестерни-сателлиты неподвижны, и скорость вращения шестерни главной передачи равна скоростям вращения солнечных шестерней: колеса вращаются с одинаковой скоростью. В повороте же шестерни-сателлиты начинают вращаться, обеспечивая разницу скоростей солнечных шестерней и, следовательно, колес на внешней и внутренней стороне поворота.

4. Каковы недостатки дифференциала?

Главным недостатком дифференциала одновременно является его главное преимущество – возможность передавать до 100% мощности на одно из колес. Исходя из этого, в условиях, когда одно колесо имеет недостаточное сцепление с поверхностью, основная часть мощности будет передаваться именно на него. Таким образом, порой даже имея одно колесо на поверхности с достаточным сцеплением, автомобиль не может тронуться с места.

Для устранения этой проблемы были разработаны разнообразные конструкции – дифференциалы с повышенным внутренним сопротивлением (так называемые самоблоки) и дифференциалы с принудительной блокировкой, ручной или автоматизированной. В зависимости от конструкции и назначения они могут как изменять перераспределение потока мощности в пользу колеса с хорошим сцеплением с поверхностью, так и полностью замыкать дифференциал, заставляя колеса на оси вращаться с одинаковой скоростью. Разные типы таких дифференциалов мы рассмотрим в отдельных материалах.

Назначение

Применение дифференциалов в трансмиссиях автомобилей обусловлено необходимостью обеспечить вращение ведущих колёс одной оси с разной частотой. В первую очередь это необходимо в поворотах, но также и при разном диаметре ведущих колёс, что возможно при вынужденной установке шин двух разных типоразмеров или при разности давления в шинах. В случае, если оба колеса имеют жёсткую кинематическую связь, любое рассогласование частот вращения по вышеупомянутым причинам приводит к возникновению так называемой паразитной циркуляции мощности. Это безусловно вредное явление вызывает проскальзывание колеса с меньшей силой сцепления относительно поверхности дороги, дестабилизирует движение автомобиля по дуге, нагружает трансмиссию и двигатель, повышает расход топлива и проявляется тем сильнее, чем меньше радиус поворота и выше силы сцепления, действующие на колёса. Дифференциал, установленный в разрез валов привода колёс одной оси, позволяет разорвать жёсткую кинематическую связь между колёсами и устранить паразитную циркуляцию мощности, не потеряв при этом возможностей по передаче мощности на каждое колесо с КПД близким к 100%. Подобный дифференциал называется «межколёсным», а данная область применения является основной для дифференциалов вообще, так как межколёсный дифференциал присутствует в приводе ведущих колёс всех легковых, грузовых и абсолютно подавляющей части внедорожныхспортивных и гоночных автомобилей.

Помимо привода ведущих колёс автомобиля дифференциалы также применяются:

  • В приводе двух и более постоянно ведущих осей от одного двигателя (так называемый «межосевой» дифференциал).
  • В приводе соосных воздушных и водных винтов противоположного вращения (в качестве дифференциала и редуктора одновременно).
  • В дифференциальных механизмах поворота гусеничных машин (в связке из одного-двух-трёх дифференциалов с разными принципами совместной работы).
  • При сложении передаваемой вращением мощности от двух двигателей с произвольными частотами вращения на один общий вал.

При повороте автомобиля, все его колеса проходят разный по длине путь, и если между двумя ведущими колесами существует жесткая связь, они начнут проскальзывать. Скольжение колес при повороте приводит к повышенному расходу топлива, износу шин, нарушению устойчивости и т. п.

Дифференциал позволяет ведомым валам вращаться с разными угловыми скоростями и выполняет функции распределения подводимого к нему крутящего момента между колесами или ведущими мостами. Дифференциалы бывают межколесными и межосевыми (в случае установки между несколькими ведущими мостами).

Впервые дифференциал был применен в 1897г. на паровом автомобиле. В настоящее время все автомобили имеют межколесные дифференциалы на ведущих мостах. Наиболее распространенным является конический симметричный дифференциал, включающий в себя: корпус, сателлиты, ось сателлитов (или крестовину) и полуосевые шестерни. Обычно число сателлитов в дифференциалах легковых автомобилей — два, грузовых и внедорожных — четыре.

Симметричный дифференциал получил свое название за способность распределять подводимый момент поровну при любом соотношении угловых скоростей, соединенных с ним валов. Применение такого дифференциала в качестве межколесного, обеспечивает устойчивость при прямолинейном движении, а также при торможении двигателем на скользкой дороге.

Существенным недостатком обычного дифференциала является снижение проходимости автомобиля, если одно из его колес попадает в условия малого сцепления с опорной поверхностью. При этом на колесо, находящееся в нормальных сцепных условиях, нельзя подвести крутящий момент, превышающий тот, который может быть реализован на колесе, находящемся в условиях малого сцепления (это приводит к пробуксовке колеса). Для преодоления этого недостатка в некоторых конструкциях используются Дифференциалы полноприводных автомобилей различных конструкций.

1) с электронной блокировкой;

2) с дисковым дифференциалом;

3) с вязкостной муфтой.

Управление системой осуществляется как механически водителем, так и с помощью специальных блоков управления, которые учитывают угловые скорости колес и разность крутящего момента на переднем и заднем приводе. Полностью автоматические системы позволяют экономить топливо, обеспечивают улучшение проходимости автомобиля, облегчая его управление на высокой скорости и лучше реализуют мощность мотора.

Сегодня подобные системы самоблокирующихся дифференциалов зарекомендовали себя с наилучшей стороны, они отличаются прочностью, надежностью и долговечностью, не требуя в процессе эксплуатации какого-либо сложного обслуживания и ремонта.

Разновидности механизмов

Чтобы избавиться от пробуксовок на скользком дорожном покрытии либо в условиях бездорожья, производители комплектуют транспортные средства дифференциальными устройствами следующих конструкций:

  • механизм свободного типа с принудительной блокировкой от привода;
  • частично блокирующийся дифференциал повышенного сопротивления;
  • самоблокирующаяся червячная передача типа Torsen.

В первом варианте применяется рассмотренный выше шестеренчатый узел, дополнительно оснащенный блокировочным устройством. Система функционирует просто: в случае необходимости водитель активирует привод, фиксирующий сателлиты в неподвижном состоянии. Крутящий момент начинает делиться ровно пополам, оси вращаются с одинаковой скоростью и транспортное средство успешно преодолевает проблемное место.

Принудительная блокировка межосевого дифференциала включается с помощью различных приводов:

  • механический – от рычага раздаточной коробки;
  • электрический;
  • пневматический;
  • гидравлический.

Аналогичные приводные элементы применяются для остановки и удержания сателлитов переднего либо заднего моста.

Автомобили дорогой комплектации производители оснащают антипробуксовочной системой. Она «обманывает» дифференциальное устройство другим способом: по сигналу датчика, фиксирующего быстрое вращение одного колеса, электроника отдает команду его притормозить. Тогда сателлитные шестеренки начинают передавать больше мощности на другую ось и авто прекращает «грестись» на месте.

Устройство повышенного сопротивления

Помимо сателлитов, ведущих и ведомых шестерен, дифференциал повышенного трения включает такие элементы:

  • корпус, жестко прикрепленный к планетарной шестеренке;
  • пакет фрикционных дисков, установленных на каждой полуоси;
  • стальные диски, чьи выступы зафиксированы в корпусе;
  • распорная пружина, вставленная между коническими шестернями полуосей.

Стальные и фрикционные диски (похожие применяются в сцеплении) установлены поочередно, первые вращаются вместе с корпусом, вторые – с осями. Конусообразная шестеренка надета на шлицы оси и способна смещаться на определенное расстояние. Пружина поддавливает 2 противоположных осевых шестерни.

Частичная блокировка дифференциала происходит следующим образом:

  1. На прямолинейном сухом участке дороги сателлиты неподвижны, а диски вращаются друг относительно друга.
  2. При попадании одной шины на скользкий участок начинается пробуксовка. Благодаря конусной форме зубьев шестеренки со стороны остановившегося колеса начнут взаимно отталкиваться.
  3. Шестерня полуоси сдвинется и сожмет пакет дисков. Возникнет сила трения, заставляющая ось вращаться вместе с корпусом напрямую от «планетарки» в обход сателлитов.

Подобное устройство самостоятельно регулирует степень блокировки – чем медленнее крутится покрышка с хорошим сцеплением, тем сильнее сжимаются диски и подается больше крутящего момента.

Самоблокирующиеся передачи Torsen

Принцип работы данных механизмов базируется на одной особенности червячной пары: шестеренка способна передавать вращение сателлиту, но обратное действие невозможно. Все шестерни, включая сателлитные, сделаны в виде цилиндров с косыми дугообразными зубьями. Всего в механизме применяется 3 пары червячных сателлитов, установленных вокруг шестеренок полуосей.

Самоблокирующийся дифференциал работает так:

  1. Во время прямолинейного движения червячные сателлиты ведут себя аналогично конусным – не крутятся сами, но вращают оси от главной передачи.
  2. На повороте число оборотов одной полуоси вырастет и она придаст вращение парам сателлитов – мощность начнет распределяться по-разному.
  3. Поскольку каждая пара сателлитов связана между собой прямозубой передачей, пробуксовка одного колеса исключается. Ось способна крутить свой сателлит, тот вращает соседний, который уже не может поворачивать вторую полуось. Механизм блокируется автоматически.

В среде любителей экстремальной езды по бездорожью известен простейший способ избежать пробуксовок – блокировка заднего дифференциала с помощью сварки. Сателлиты намертво привариваются к осям и всегда находятся в неподвижном состоянии. Правда, подобные автомобили предназначены только для езды по грунту и снегу – эксплуатировать их на твердом покрытии чересчур неудобно и дорого.