Классы (уровни) напряжения электрических сетей потребителей

Понятие электрического напряжения в физике

Готовые работы на аналогичную тему

  • Курсовая работа Электрическое напряжение цепи 420 руб.
  • Реферат Электрическое напряжение цепи 240 руб.
  • Контрольная работа Электрическое напряжение цепи 200 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Электрическим током в физике считается направленное перемещение заряженных частиц, создаваемое электрополем, совершающим при этом определенную работу.

Определение 1

Работа создающего ток электрополя называется работой тока ($A$). Такая работа может на разных участках цепи отличаться, однако при этом она будет пропорциональной проходящему через него заряду.

Физической величиной работы тока на конкретном участке при перемещении по нему заряда 1 Кл считается электрическое напряжение ($U$).

Для определения напряжения на отдельно взятом участке существует следующая формула:

$U =\frac{A}{q}$, где:

  • $A$ — работа тока,
  • $q$ — прошедший по участку заряд.

«Сила тока. Напряжение»

Сила тока

Характеристикой тока в цепи служит величина, называемая силой тока (I).  Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10-7Н. Эта единица и называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.

Амперметр

Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «—», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «—» к отрицательному пoлюсу истoчникa тока.

Напряжение

Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда.

Напряжение (U) — это физическая величина, равную отношению работы (А) электрического поля по перемещению электрического заряда к заряду (q): U = A/q.

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда (t), то получим: U = At/qt. В числителе этой дроби стоит мощность тока (Р), а в знаменателе — сила тока (I). Получается формула: U = Р/I, т.е. напряжение — это физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: = 1 Дж/1 Кл = 1 В (один вольт).

Вольтметр

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят. Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «—», при включении вольтметра в цепь клeмма со знаком «+» присоединяется к положительному полюсу источника тока, а клеммa со знаком «—» к отрицательному полюсу источника тока.

Формулы и определения.

1. Все проводники, используемые в электрических цепях, имеют условные обозначения для изображения на схемах и могут образовывать последовательные, параллельные и смешанные соединения.

2. Мощность тока – физическая величинa, хаpактеpизующая скорость превращения электрической энергии в другие её виды. Единица для измерения – 1 ватт (1 Вт). Измерительный прибор – ваттметр.

3. Сила тока – физическaя вeличина, характеpизующaя скоpость прохождения заряда через проводник и равная отношению заряда, пpoшедшего через попеpeчное сечение проводника, ко времени перемещения. Единица – 1 ампер (1 А). Измерительный прибор – амперметр (подключают последовательно).

4. Электрическое напряжение – физическaя вeличина, характеризующая электрическое поле, создающее ток, и равная отношению мощности тока к его силе. Единица – 1 вольт (1 В). Измерительный прибор – вольтметр (подключают параллельно)

5. Работа тока – физичeская величинa, хаpактеpизующая количество электроэнергии, превратившейся в другие виды энергии. Единица – 1 джоуль (1 Дж). Измерительный прибор – электрический счётчик, использующий единицу 1 киловатт-час (1 кВт·ч).

Конспект урока «Сила тока. Напряжение».

Следующая тема: «Электрическое сопротивление».

Средства защиты

По регламенту «Охраны труда» рабочие должны соблюдать меры защиты и передвигаться по зоне в диэлектрических ботах, иметь при себе диэлектрические перчатки, изолирующие штанги, измерители напряжения, монтажные инструменты с изолирующими рукоятками.

Что касается работников электрических профессий самым основным риском является работа без наряда допуска. Когда вы знаете, что должно быть отключено и где заземлено, вы можете работать безопасно.

Помимо наряд-допуска существует оценка риска, которая поможет вам сориентироваться на объекте и избежать опасности. Оценка риска — это документ, в котором указан предполагаемый ущерб здоровью и жизни работника, связанный с производством работ на объекте.

Похожие материалы:

  • Отгорание нуля
  • Безопасность в аварийных ситуациях
  • Требования безопасности при выполнении работ
  • Средства защиты в электроустановках

В завершении жизненная мудрость. Будьте осторожны и соблюдайте технику безопасности, это поможет вам спасти вашу жизнь. Всегда смотрите не только по сторонам, но и под ноги, тем более, если находитесь в знакомой вам местности, порой за ночь может все измениться. 

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Напряжение в цепях постоянного тока

Какое напряжение должно быть на аккумуляторе

В таких цепях значение описываемой характеристики в течение длительного времени остается постоянным. Постепенное изменение значения данной характеристики при подключении потребителей (нагрузки) к батарее связано с ее разрядкой – уменьшением разности потенциалов между клеммами источника питания вследствие перемещения большего количества носителей зарядов с положительной клеммы на отрицательную.

Ток и напряжение в данном случае связаны законом Ома, формула которого приведена ниже:

I = U/R,

где:

  • I – сила тока, А;
  • U – разность потенциалов, В;
  • R – сопротивление, Ом.


Треугольник Ома – удобная форма формулы одноименного закона

Чем опасен АС ток для человека

Как уже упоминалось, особенность АС напряжения заключается в равномерном протекании частиц от одного полюса к другому. В сравнении с DC током он считается менее опасным так как в большинстве случаев оказывает на человеческий организм спазматическое воздействие. Спазм проходит сразу после снятия напряжения, что снижает вероятность критических результатов.

Однако отсутствие опасности для организма наблюдается только в случае малого значения постоянного тока. Чем больше его значение, тем возрастает вероятность критических последствий. Например, при контакте с напряжением, превышающем 500 В, ток может оказаться опаснее чем переменный. Однако в быту такие значения отсутствуют и используются в трансформаторах или подстанциях, доступ куда открыт только специально обученным людям.

Что опаснее для человека

Для человеческого организма большую опасность представляет переменный АС. Под его воздействием происходит резкая фибрилляция сердечных желудочков. Но это не означает, что постоянный ток может считаться безопасным. Люди, попавшие под такое напряжение, получают тяжёлые травмы в результате отброса и механического удара.

Что такое ЭДС

Что такое ЭДС, думаете Вы? Сейчас расскажу!

Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и
напряжение.

Давайте возьмём прибор, который измеряет вольты (вольтметр),
батарейку и произведём замер.

Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).

А теперь подключим к батарейке лампочки.

Измерение напряжения на различных участках электрической цепи.

Заметили, что на одной лампочке напряжение (не ЭДС)
составляет 1 Вольт, а на другой 0,3 вольта

Напряжение на лампочках зависит от их мощности.Мощность измеряется
в Ваттах.

 Мощность= Напряжение
* ток
(P=U*I)

Чем больше мощность лампочки, тем больше будет на ней
напряжение.

Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3
Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление,
вот туда они и ушли.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Как защититься, меры безопасности

Из сказанного видно, что наведенное напряжение несет большие риски, что требует ответственности реализации мероприятий по защите людей от попадания в опасную зону.

Организационные меры безопасности:

  1. Работники, выполняющие работы в области наводки, должны иметь 3-ю группу по электробезопасности, а руководитель работ — 4-ю.
  2. Наличие опыта работ по ремонту и обслуживанию силовых линий, а также элементов молниезащиты.
  3. Организация параметра безопасности возле рабочего места, выполнение мероприятий, указанных в заявке и наряде-допуске.
  4. Нулевой провод в измеряемой группе считается таковым, что находится под U.
  5. Начало и завершение работ оформляется в письменном виде. Как правило, заполняется журнал допуска с подписью работников, заполняется наряд-допуск.

Измерения и работы нельзя проводить в условиях сильного тумана или ветра, осадков или плохой видимости. Если в процессе измерений работник выявляет поврежденный элемент ВЛ или КЛ, работы останавливаются до устранения неполадки.

При работе на линиях с наводкой необходимо учесть следующие нюансы:

  1. Заземление должно находиться в зоне видимости рабочего места.
  2. При наличии только статического напряжения достаточно одного заземления, но для надежности лучше установить заземлитель в двух местах. Если одно из устройств выйдет из строя, второе подстрахует.
  3. В случае с электромагнитной проводкой принимаются более серьезные меры безопасности. В этом случае заземление ставится непосредственно на рабочем месте. В этом случае наведенный потенциал в месте выполнения работ будет равен нулю.

Заземление — надежный способ защититься от наведенного напряжения. Но даже в этом случае отключенная линия будет находиться под негативным воздействием.

Для работы можно выбрать один из вариантов:

  1. Отключение электроустановок, которые находятся параллельно к рабочей линии. В таком случае ремонтные работы должны выполняться как можно быстрее, чтобы исключить простой потребителей без электричества или длительное снижение надежности сети.
  2. Разделение ремонтируемой линии на несколько участков, которые не имеют электрической связи. Здесь работает принцип, который упоминался выше. Речь идет о том, что величина наводки напрямую зависит от длины участка.
  3. Работы под напряжением или с его отключением, но с применением специальных средств персональной защиты. В таком случае действия работника несколько скованы, но зато удается избежать отключения или снижения надежности сети.

Для обеспечения личной безопасности применяются следующие изделия:

  1. Сигнализаторы напряжения — показывают факт наличия U или наводки.
  2. Применение защитной одежды и ковриков на диэлектрической основе во избежание прохождения тока через организм человека.
  3. Использование указателей напряжения, а также электроизолирующих штанг для проверки уровня наведенного U.
  4. Работа в ботах и изолирующих перчатках.

При использовании измерительных устройств и СИЗ необходимо ориентироваться на класс U, для которого они предусмотрены.

Как сделать заземление в частном доме самому, своими руками, схемы, фото, видео

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Rрезисторов = (R * R)/R + R = R^2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Законы постоянного тока. Закон Ома для участка цепи. Сопротивление. Соединение проводников

Подробности
Просмотров: 627

Электрический ток — упорядоченное движение заряженных частиц ( свободных электронов или ионов).
При этом через поперечное сечение проводника перносится электрический заряд ( при тепловом движении заряженных частиц суммарный перенесенный электрический зпряд = 0, т.к. положительные и отрицательные заряды компенсируются).

Направление электрического тока — условно принято считать направление движения положительно заряженных частиц ( от + к — ).

Действия электрического тока ( в проводнике):

тепловое действие тока — нагревание проводника ( кроме сверхпроводников);химическое действие тока — проявляется только у электролитов, при этом на электродах выделяются вещества, входящие в состав электролита;магнитное действие тока ( основное ) — наблюдается у всех проводников (отклонение магнитной стрелки вблизи проводника с током и силовое действие тока на соседние проводники посредством магнитного поля).

Количественная характеристика электрического тока

Сила тока — это отношение заряда q, перенесенного через поперечное сечение проводника за интервал времени t к этому интервалу.Постоянный ток — электрический ток, у которого сила тока со временем не меняется.

Сила тока зависит от заряда частицы, концентрации частиц, скорости направленного движения частиц и площади поперечного сечения проводника.

где S — площадь поперечного сечения проводника, qo — электрический заряд частицы, n — концентрация частиц, v — скорость упорядоченного движения электронов.

Единица измерения силы тока:

Условия, необходимые для существования электрического тока:- наличие свободных электрически заряженных частиц;
— наличие внутри проводника электрического поля действующего с силой на заряженные частицы для их упорядоченного движения (свободные электроны по инерции , без действия силы, перемещаться не могут из-за тормозящего воздействия на них кристаллической решетки).
Если в проводнике существует электрическое поле, то между концами проводника есть разность потенциалов.
Если разность потенциалов постоянна во времени, в проводнике течет постоянный ток.

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ

где U — напряжение на концах участка цепи, R — сопротивление участка цепи. (сам проводник тоже можно считать участком цепи).
Для каждого проводника существует своя определенная вольт-амперная характеристика.

СОПРОТИВЛЕНИЕ

— основная электрическая характеристика проводника.
— по закону Ома эта величина постоянна для данного проводника.

1 Ом — это сопротивление проводника с разностью потенциалов на его концах в 1 В и силой тока в нем 1 А.
Сопротивление зависит только от свойств проводника:

где S — площадь поперечного сечения проводника, l — длина проводника, ро — удельное сопротивление, характеризующее свойства вещества проводника.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

— состоят из источника, потребителя электрического тока, проводов, выключателя.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

I — сила тока в цепи
U — напряжение на концах участка цепи
R — полное сопротивление участка цепи

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

I — сила тока в неразветвленном участке цепи
U — напряжение на концах участка цепи
R — полное сопротивление участка цепи

Вспомни, как подключаются измерительные приборы:

Амперметр — включается последовательно с проводником, в котором измеряется сила тока.

Вольтметр — подключается параллельно проводнику, на котором измеряется напряжение.

Следующая страница «Работа и мощность постоянного тока. Закон Джоуля-Ленца»

Назад в раздел «10-11 класс»

Электростатика и законы постоянного тока — Класс!ная физика

Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда —
Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля —
Проводники и диэлектрики в электростатическом поле. Поляризация диэлектриков —
Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов —
Электроемкость. Конденсаторы. Энергия заряженного конденсатора —
Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление —
Работа и мощность тока

Сравнительная таблица

Сравнительный график переменного тока и постоянного тока

Переменный ток Постоянный ток
Количество энергии, которое можно нести Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Устойчивый магнетизм вдоль провода.
частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
направление Он меняет свое направление, пока течет по кругу. Он течет в одном направлении в цепи.
ток Это величина, изменяющаяся во времени Это ток постоянной величины.
Поток электронов Электроны продолжают переключать направления – вперед и назад. Электроны неуклонно движутся в одном направлении или «вперед».
Получен из Генератор переменного тока и сеть. Ячейка или батарея.
Пассивные параметры Сопротивление. Только сопротивление
Фактор силы Лежит между 0 и 1. это всегда 1.
Типы Синусоидальный, Трапециевидный, Треугольный, Квадратный. Чистый и пульсирующий.

Постоянный ток

Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.

От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.

Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.

Переменный ток

Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».

Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.

Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.

При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.

В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.

Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.

Упругая и пластическая деформация

Механическое напряжение, которое зависит от природы вещества, влияет на способность тела восстанавливать свою первоначальную форму после возникновения дефекта в кристаллической решетке. По этому признаку выделяют упругую и пластическую деформацию.

При пластической деформации тело после воздействия внешней силы не способно восстановить прежнюю форму. Например, пластилин при надавливании на него пальцем сохраняет образовавшуюся ямку.

Упругая деформация характерна для тех веществ, которые способны восстанавливать свою первоначальную форму после воздействия на них внешней силы. Примером может служить та же пружина, которая при любом описанном выше виде деформации возвращается в первоначальное состояние.

Что это такое?

Под термином «наведенное напряжение» скрывается потенциал, который возникает в зоне электромагнитного влияния действующих электроустановок или проводников электротока.

Такая наводка может возникать в зоне высоковольтных линий, электрических установок высокого U и даже бытовой сети. Явление наведенного напряжения состоит из 2-х составляющих, которые рассмотрим подробнее.

Электростатика

Создание потенциала объясняется распространением электрического поля от источника электричества, находящегося в непосредственной близости.

Наибольшее воздействие характерно для двух проводов, которые расположены рядом и находятся параллельно друг относительно друга. При этом один находится под U, а второй нет.

Величина наведенного напряжения зависит от следующих аспектов:

  1. Размер разности потенциалов.
  2. Расстояние от источника питания с напряжением до другого элемента.

Для лучшего понимания систему можно сравнить с одним или несколькими конденсаторами. Формально наводка формируется по всей длине проводника.

Во избежание накопления заряда необходимо заземлить отключенный проводник. В таком случае наведенное напряжение пойдет в землю, а работа будет безопасна для человека.

Для расчета статического напряжения необходимо перемножить два элемента:

  1. Коэффициент емкостного воздействия. Его размер можно получить в справочнике, а сам параметр зависит от расстояния до источника U и типа проводника.
  2. Рабочее напряжение.

Чем больше U и чем ближе находится проводник, тем выше наведенный параметр.

Для расчета максимального наведенного напряжения применяется формула:

Электромагнитная составляющая

Существует еще один тип наводки — ЭМ наведенное напряжение. Его суть состоит в распространении магнитного поля на определенной территории во все стороны от проводника.

Чем сильнее ЭМ поле, тем выше наведенное U в отключенном проводнике.

Наведенная ЭДС в отключенной линии электропередача будет равна:

При заземлении проводника в месте соединения с землей потенциал будет равен нулю, но по мере удаления от этого места он увеличится. Это означает, что максимальный параметр разницы потенциалов будет на наиболее удаленных концах линии (ВЛ или КЛ).

Напряжение в точке х относительно земли будет равно: