Скорость потока
Скорость воды в трубе имеет два значения: у стенок она равна нулю, у оси — максимальный параметр. Чем дальше от оси, тем слабее движется вода.
Если рассматривать цилиндр, по которому движется жидкость, как воображаемую модель, можно сказать, что на воду внутри трубы не будут действовать никакие силы. Но в реальности все не так. Первая сила, которая действует на водяной поток, — сила трения о внутренние стенки трубопровода. Она уменьшается с отдалением от стенок.
Вторая сила – нагнетающая, действующая от насоса в направлении движении потока. Если этот параметр всегда неизменный, течение жидкости внутри трубы происходит ламинарно. Скорость остается неизменной, у стенок она равна нулю. Это идеальная ситуация.
На практике так случается редко. Факторов для этого много, к примеру, включение и отключение насоса, засорение фильтра и так далее. В таком случае у стенок трубопроводов скорость изменяется резко: то больше, то меньше с иногда огромной разницей. В остальной части эта характеристика изменяется меньше.
Многие интернет-порталы предлагают калькуляторы, с помощью которых можно рассчитать скорость потока жидкости, проходящей через цилиндр. Для этого потребуется всего лишь два параметра:
- внутренний диаметр трубы в мм;
- производительность водопровода, а точнее, объем жидкости, проходящей через трубу за определенный промежуток времени (м³/час).
Но в таких калькуляторах не учитывается материал, из которого трубы изготовлены, а также наличие или отсутствие фитингов, дополнительных контуров и запорной арматуры. Эти расчетные сервисы можно взять за основу, но точного значения от них ждать не стоит.
Когда нужно проводить вычисления?
Выполнять вычисления необходимо при выборе труб для водопровода. Диаметр должен быть подходящим, чтобы избежать чрезмерного водорасхода и обеспечить нормальный напор.
Такая необходимость появляется при проектировании дома и подведении к нему коммуникаций. При выборе трубы с оптимальным сечением для водопровода нужно обязательно выполнять ряд расчетов. Необходимо узнать максимальные объемы необходимой воды в доме за минуту.
Для этого нужно посмотреть паспортные данные стиральной и посудомоечной машин, узнать их расход. К полученным данным приплюсовать расход воды на кранах (через один прибор протекает примерно 5-6 литров за минуту времени).
Исходя из полученных результатов, нужно приобрести трубу с таким сечением, чтобы этого было достаточно для одновременной работы всех устройств и кранов.
Применение закона Бернулли на практике
Указанный закон широко применяется в технике. Так, функционирование многих приборов основано на этом важнейшем правиле гидравлики. Целый ряд устройств разработан на основании принципа Бернулли: например, это карбюратор, эжектор, водоструйный насос, трубчатый расходомер Вентури, сопло, водомерная шайба.
Карбюратор нужен для создания рабочей смеси горючего (подсоса бензина, его смешивания с воздухом) в двигателях внутреннего сгорания. Струйные насосы также очень востребованы в технике, например, в реактивных жидкостных двигателях. Расходомер Вентури необходим в промышленных и лабораторных условиях.
Закон Бернулли применим к полету самолета либо искривленной траектории вращающегося мяча. Он относится и к суднам в море: им нельзя проходить чересчур близко друг к другу, поскольку повышение между ними скорости потока создаст область низкого давления, а это чревато бортовым столкновением. Еще один пример действия уравнения на практике — занавеску в ванной притягивает вода, текущая из душа.
Поток жидкости и его параметры
Поток жидкости характеризуется такими параметрами как площадь живого сечения S, расход жидкости Q(G), средняя скорость движения v.
Живое сечение потока — это сечение, которое перпендикулярно в каждой точке скорости частиц потока жидкости.
Векторы скорости частиц имеют некоторое расхождение в потоке жидкости.
Живым сечением потока жидкости называется сечение, которое перпендикулярно в каждой точке скорости частиц потока жидкости.
Поэтому живое сечение потока — криволинейная плоскость (рис. а, линия I—I) В виду незначительного расхождения векторов скорости в гидродинамике за живое сечение принимается плоскость, расположенная перпендикулярно скорости движения жидкости в средней точке потока.
Расход жидкости — это количество жидкости, протекающей через живое сечение потока в единицу времени. Расход может определяться в массовых долях G и объемных Q.
Средняя скорость движения жидкости — это средняя скорость частиц в живом сечении потока.
Если в живом сечении потока, движущегося, например, в трубе, построить векторы скорости частиц и соединить концы этих векторов, то получится график изменения скоростей (эпюра скоростей).
Если площадь такой эпюры разделить на диаметр данной трубы, то получится значение средней скорости движения жидкости в данном сечении:
Объемный расход жидкости рассчитывается по формуле:
Параметры потока жидкости определяют характер движения жидкости. При этом оно может быть установившимся и неустановившимся, равномерным и неравномерным, неразрывным и кавитационным, ламинарным и турбулентным.
Если параметры потока жидкости не изменяются во времени, то ее движение называется установившимся.
Равномерным называется движение, при котором параметры потока не изменяются по длине трубопровода или канала. Например, движение жидкости по трубе постоянного диаметра является равномерным.
Неразрывным называется движение жидкости, при котором она перемещается сплошным потоком, заполняющим весь объем трубопровода.
Отрыв потока от стенок трубопровода или от обтекаемого предмета приводит к возникновению кавитации.
Кавитацией называется образование в жидкости пустот, заполненных газом, паром или их смесью.
Кавитация возникает в результате местного уменьшения давления ниже критического значения pкр при данной температуре (для воды ркр= 101,3 кПа при Т= 373 К или ркр= 12,18 кПа при Т= 323 К и т. д.). При попадании таких пузырьков в зону, где давление выше критического, в эти пустоты устремляются частицы жидкости, что приводит к резкому возрастанию давления и температуры. Поэтому кавитация неблагоприятно отражается на работе гидротурбин, жидкостных насосов и других элементов гидравлических устройств.
Ламинарное движение — это упорядоченное движение жидкости без перемешивания между ее соседними слоями. При ламинарном течении скорость и силы инерции, как правило, невелики, а силы трения значительны. При увеличении скорости до некоторого порогового значения ламинарный режим течения переходит в турбулентный.
Турбулентное движение — это течение жидкости, при котором ее частицы совершают неустановившееся беспорядочное движение по сложным траекториям. При турбулентном течении скорость жидкости и ее давление в каждой точке потока хаотически изменяется, при этом происходит интенсивное перемешивание движущейся жидкости.
Для определения режима движения жидкости существуют условия, согласно которым скорость потока может быть больше или меньше той критической скорости, когда ламинарное движение переходит в турбулентное и наоборот.
Однако установлен и более универсальный критерий, который называют критерием или числом Рейнольдса:
Опытами было установлено, что в момент перехода ламинарного режима движения жидкости в турбулентный Re = 2320.
Число Рейнольдса, при котором ламинарный режим переходит в турбулентный, называется критическим. Следовательно, при Re 2320 — турбулентное. Отсюда критическая скорость для любой жидкости:
Источник
Гидравлический расчёт трубопроводов систем отопления с помощью программ
Расчёт отопления частного дома – достаточно сложная процедура. Однако специальные программы её значительно упрощают. Сегодня доступен выбор нескольких онлайн сервисов такого типа. На выходе получаются следующие данные:
- требуемый диаметр трубопроводной линии;
- определённый вентиль, служащий для балансировки;
- размеры элементов отопления;
- значения датчиков перепадов давления;
- параметры контроля термостатических клапанов;
- числовые настройки регулирующих деталей.
Программа «Oventrop co» для выбора полипропиленовых труб. Перед её запуском необходимо определить искомые элементы оборудования и задать настройки. По окончании вычислений пользователь получает несколько вариантов реализации системы отопления. В них итерационно вносятся изменения.
Расчет теплосети позволяет правильно подобрать трубы и узнать расход теплоносителя
Данное программное обеспечение гидравлического расчёта позволяет выбрать трубные элементы магистрали нужного диаметра и определить расход теплоносителя. Оно – надёжный помощник при вычислении как однотрубной, так и двухтрубной конструкции. Удобство работы – вот одно из основных достоинств «Oventrop co». В комплект данной программы входят готовые блоки и каталоги материалов.
Программа «HERZ CO»: расчёт с учётом коллектора. Это программное обеспечение находится в свободном доступе. Оно позволяет производить расчёты вне зависимости от количества труб. «HERZ CO» помогает создавать проекты для ремонтируемых и новых зданий.
Программа тоже ориентирована на расчёт одно- и двухтрубных систем отопления. С её помощью учитывается действие термостатического вентиля, а также определяются потери давления в отопительных приборах и показатель сопротивления потоку теплоносителя.
Результаты расчётов выводятся в графическом и схематическом виде. В «HERZ CO» реализована функция справки. В программе имеется модуль, выполняющий функцию поиска и локализации ошибок. Пакет программ сдержит каталог данных о приборах для обогрева и об арматуре.
Программный продукт Instal-Therm HCR. С помощью данного программного обеспечения можно рассчитать радиаторы и обогрев поверхностей. В комплект его поставки входит модуль Tece, в котором содержатся подпрограммы для проектирования систем водоснабжения разных типов, сканирования чертежей и расчёта тепловых потерь. Программа оснащена различными каталогами, которые содержат арматуру, батареи, теплоизоляцию и разнообразные фитинги.
Протяженность трубопровода имеет важное значение для расчетов
Компьютерная программа «ТРАНЗИТ». Данный пакет программ позволяет осуществлять многовариантный гидравлический расчёт нефтепроводов, в которых имеются промежуточные нефтеперекачивающие станции (далее НПС). В качестве исходных данных выступают:
- абсолютная шероховатость труб, давление в конце магистрали и её протяжённость;
- упругость и кинематическая вязкость насыщенных паров нефти и её плотность;
- марка и число насосов, включаемых как на головной станции, так и на промежуточных НПС;
- раскладка труб по величине диаметра;
- профиль трубопровода.
Результат расчёта представлен в виде данных о характеристиках самотёчных участков магистрали и о расходе перекачки. Помимо того, пользователю выдаётся таблица, отображающая величину давления до и после любой из НПС.
В заключение необходимо сказать, что выше были приведены самые простые методики расчётов. Профессионалы используют куда более сложные схемы.
расчет расхода воды по диаметру трубы и давлению: параметры, влияющие на расход воды
Расчет расходов воды по диаметру трубы и давлению.
Объем пропускаемой воды в трубопроводе зависит от таких показателей, как диаметр трубопроката и давления внутри сети. Расчет расхода воды по диаметру и давлению следует выполнять на этапе создания проекта системы, чтобы получить важные параметры, по которым будет работать, как домашняя, так и производственная трубопроводная магистраль.
С какой целью производят данный расчет. Составляя план строительства любого дома, который имеет несколько санузлов, необходимо иметь достоверные цифры того, какой объем транспортируемой жидкости может перемещать трубопровод. При этом учитывают его давление и диаметр труб.
Общие сведения
На возможности системы влияют колебания подачи воды, когда наблюдается пик работы трубопровода. К тому же, отсутствие приборов учета воды приводит к расчету потребляемой жидкости по проходимости трубы.
Данным методом при расчете пользуются для трубопроводов промышленных предприятий.
Если отсутствуют счетчики в частных домах, то учитывают общепринятые санитарные нормативы: на каждого человека за сутки начисляют около 360 литров.
Факторы, влияющие на общие показатели проходимости.
Проходимость воды напрямую зависит от многих явлений. К основным относят:
1.внутреннее сечение труб.
2.давление внутри системы влияет на напор воды.
3.материал, из которого изготовлены детали магистрали.
Определить расход воды на конце сети можно, если знать диаметр трубы, так как этот показатель считается главным, который влияет на объем пропускаемой жидкости. На этот поквазатель влияет толщина стенок трубопровода, величину можно определить по силе напора жидкости.
Существуют параметры, которые косвенно влияют на проходимость трубы. Это температура воды, вязкость.
https://youtube.com/watch?v=BfzSRshPMTY
Зная на этапе проектирования пропускные возможности системы, выбирают подходящий материал, технологию укладки трубопровода. Данные знания гарантируют ее бесперебойную на высоком уровне работу в течение долгих лет.
Подробности
Внимание! Увеличение размера диаметра круглого трубопроката влияет на расход воды. То есть по трубе с большим сечением протечет жидкость большего объема, нежели за такое же время по трубам с меньшим диаметром. Определяя расход воды по диаметру, необходимо обязательно учитывать давление внутри труб
Определяя расход воды по диаметру, необходимо обязательно учитывать давление внутри труб.
К примеру, сквозь трубу в один метр, имеющую сечение один сантиметр, транспортируется намного меньше воды за такое же время, как через трубопрокат с диаметром в 20 метров. Самый большой показатель воды будет у труб с самым большим диаметром и с самым большим давлением внутри них.
Расход воды у трубы при оптимальном давлении. Расчет пропускной способности по диаметру трубопровода нужен, чтобы определить средний показатель водного расхода при хорошем напоре.
Для этого учитывают следующие параметры:
1.внутренний диаметр трубопрокатов.
2.скорость жидкости.
3.максимальный показатель давления.
4.количество поворотов, затворов на магистрали.
5.материал труб, длина трубопровода.
Если подбирать диаметр трубы по объему расходуемой воды, учитывая данные таблицы, то сделать это просто, но данные будут неточными. Если учитывать давление и скорость жидкости в трубах, имеющихся на практике, произвести расчеты на месте, то показатели будут более верными.
Таблица приводит данные расчетов расхода жидкости по трубам с часто применяемым сечением и разных значениях давления.
Средний показатель давления в стандартном стояке считается равен от полутора до двух с половиной атмосфер.
Уровень давления зависит от многоэтажности здания, зависимость регулируют, разделяя систему водопровода на сегменты. Работа насосов для подачи воды изменяет скорость жидкости.
Изменяя характеристики проходимости труб посредством установки приборов, контролирующих и экономящих водорасход, типа WaterSave, изменяются данные, не соответствующие табличным значениям.
Как определить диаметр согласно СНиП 2.0.4.01 – 85.
Процесс расчета диаметра трубы относится к сложным, требующим инженерных знаний работам. Часто проектируя трубопроводную систему частного дома, все расчеты выполняют своими руками.
Данные расчета для определения водопропускного объема конструкции можно взять из таблицы, при этом надо точно знать сколько сантехнических приборов и кранов подключено к системе.
Примеры расчетов
Чаще с помощью скорости рассчитывают расход воды или диаметр труб. Для этого используют формулу:
W= V×S, где W – расход, V – скорость, S – площадь сечения выбранных труб.
По одной из таблиц выбирается скорость движения воды. Если это пожарный водопровод, в нем данный параметр должен быть в пределах 3 м/с. Достаточно большое значение, но для водопровода этого типа величина усредненная, бывает и больше.
К примеру, надо рассчитать сечение трубы. Для этого дополнительно нужно определиться, сколько воды будет расходоваться через спринклеры или дренчеры противопожарной системы. Это также табличная величина, зависящая от защищаемой площади здания или сооружения. Пусть это будет пожарная система в одну струю, в которой обычно расход составляет 3,5 л/сек или 0,0035 м³/час.
Зная все требуемые параметры водопровода, можно рассчитать сечение труб, которые будут монтироваться в сеть:
S=W/V=0,0035:3 = 0,0012 м².
Зная сечение трубы, можно подсчитать ее диаметр. Формула площади такова: S=πD²/4, отсюда формула диаметра:
D=√4S/π=√(4×0,0012:3,14)=0,0038 м или 38 мм. Такого значения диаметра труб не существует, поэтому надо выбрать стандартное большее — 40 мм.
Это самый простой пример. В реальности большинство водопроводных систем – это сложные схемы, в которых присутствуют отводы, подсоединяемые участки, установленная запорная арматура и прочие препятствия, которые снижают быстроту движения воды в водопроводе. При этом во многих сетях установлены насосные станции, которые формируют производительность и напор. Нередко в систему устанавливаются насколько насосных агрегатов, которые работают попеременно: по два, по три, по одному, в разных последовательностях включения и отключения.
Расход жидкости. Средняя скорость.
Живым сечением потока называется элементарная площадка нормальная к вектору скорости .
Объемным расходом жидкости называется объем жидкости, протекающий через данную поверхность в единицу времени.
Массовым расходом жидкости называется масса жидкости, протекающий через данную поверхность в единицу времени. Если , то
Среднерасходная скорость − постоянная для всего поперечного сечения потока и равна скорости, при которой расход равен действительному.
; ;
− плотность тока − масса жидкости, протекающая через 1 м2
сечения за 1с , или массовый расход через площадку 1м2 .
Динамика жидкости и газа.
Уравнение неразрывности.
Движение жидкости, при котором внутри потока не образуется пустот, т.е. нет разрывов струй, называется сплошным, или неразрывным. Найдем аналитическое выражение условия неразрывности течения жидкости, полагая плотность непостоянной. Секундная масса жидкости через единицу площади . ,
Пусть гранями бесконечно малого прямоугольного параллелепипеда со сторонами dx
,dy ,dz (рис. 29) ограничивается некоторое неподвижное относительно координатных осей пространство, через которое протекает жидкость.
За время сек через грань АВCD внутрь параллелепипеда втекает масса жидкости , а вытекает через грань А’В’C’D’ масса . Плотность и скорость на входе (в плоскости грани ABCD) в общем случае сжимаемой жидкости не равны плотности и скорости на выходе (в плоскости грани А’В’C’D’). При этом изменение и обуславливается только тем, что при переходе от одной грани к другой для сходственных точек этих граней меняется лишь координата х
независимо от времени, так как втекание происходит одновременно. Поэтому:
; ;
После преобразований получим
Если за время масса жидкости внутри параллелепипеда увеличилась за счет притока на величину , а уменьшилась за счет вытекания на величину , то изменение массы в этом движении вдоль координатной оси ОХ
равняется:
Аналогично найдем, что изменение массы в итоге движения вдоль осей ОY
иOZ равняется:
Общее изменение массы за время сек равно:
С другой стороны, изменение массы жидкости в объеме (dx
,dy ,dz ) параллелепипеда можно рассматривать как изменение массы в зависимо от времени. В виду постоянства координатх ,у ,z (так как параллелепипед неподвижен), изменение массы в нем обусловлено изменением плотности во времени, так как в этом случае . В начальный момент времени масса внутри параллелепипеда равна . По прошествии промежутка времениdt сек, средняя для объема параллелепипеда плотность изменится и будет равна
В конечный момент временя масса жидкости в объеме параллелепипеда равняется
Таким образом, изменение массы за время dt
будет равно
Выражения и в условиях сплошности течения представляют одно и то же изменение массы в объеме параллелепипед, поэтому или
Сократив это уравнение на величину объема параллелепипеда (dx
,dy ,dz ) (это сокращение указывает на независимость результата от объема), получим
. (1)
Это и есть уравнение неразрывности. Оно одинаково справедливо как для капельной несжимаемой ( ), так и газообразной сжимаемой ( ) жидкости. В частном случае установившегося движения плотность (как и все остальные параметры движения) от времени не зависит и, следовательно, . Поэтому уравнение неразрывности в этой случае имеет вид
Для несжимаемой жидкости ( ), как при установившемся, так и при неустановившемся движении, уравнение неразрывности имеет вид
Уравнение неразрывности в общем случае для установившегося двухмерного (плоского) движения и одномерного движения соответственно
, . (2)
Для частного случая одномерного установившегося движения несжимаемой жидкости из уравнения неразрывности (2) можно получить формулу расхода жидкости для элементарной струйки.
А именно: , или , т.е. .
Умножив на постоянную величину df
, гдеdf − площадь поперечного сечения элементарной струйки, получим , или ,т.е. .
Дифференциальное уравнение (1) неразрывности течения можно представить и в другом виде, учитывая что:
− справедливо и для других осей координат, запишем:
Записав проекции скорости как
; , , получим:
, , поэтому
Объемный расход
Это важная величина при характеристике гидродинамики. Речь идет об объеме жидкости, перемещающейся по конкретной поверхности в определенный временной промежуток. В математике выступает производной объема жидкости (метры на секунду). Когда поверхностная площадь отображает плоское поперечное сечение, поверхностный интеграл уменьшается.
Интересно, что только часть скорости потока, параллельная поверхности, влияет на объемный расход. Первый рисунок и второе уравнение демонстрируют позицию вектора скорости потока, создавая угол θ по отношению к нормальной поверхности. Это помогает вычислить объемный расход через конкретную поверхность.
Получается, что объемный расход растет с падением θ и достигает максимума при θ = 0. Объемный расход – важная скалярная величина в гидродинамике и активно применяется в расчетах расхода текучей среды. Ее можно трансформировать в массовый расход, если вы владеете плотностью жидкости.
Поток жидкости сквозь замкнутую систему часто анализируется как гидравлическая, сопоставленная с электронным потоком, где объемный поток приравнивается к электрическому току, давление – к напряжению, а скорость – к плотности тока.
Обзор |
|
Поток в трубах |
|
Уравнение Бернулли |
|
Другие приложения |
|
Вывод уравнения Бернулли
Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.
Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.
Данное уравнение – уравнение неразрывности струи.
К выводу уравнения Бернулли
Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид: