Типы и параметры двс

Оглавление

Oldsmobile Jetfire


Oldsmobile Jetfire — первая серийная легковушка с турбонаддувом. На момент его появления люди боялись сложной конструкции, к тому же проблемы с надежностью действительно имели место быть. Oldsmobile Jetfire — первая серийная легковушка с турбонаддувом. На момент его появления люди боялись сложной конструкции, к тому же проблемы с надежностью действительно имели место быть.

Парочка от концерна GM попала на прилавки США в 1962-м и наделала много шума. V-образная «восьмерка» объемом 3,5 литра выдавала 215 л.с. и 411 Н∙м крутящего момента. Разгон до сотни занимал меньше 9 секунд. Вот только на конвейере автомобили продержались всего два года. Основной причиной стали проблемы с надежностью.

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии .

  • Электродвигатели используются повсеместно, основные области применения:
  • промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
  • строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
  • потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
ЭД1 Функции Области применения
Вращающиеся электродвигатели Насосы Системы водоснабжения и водоотведения
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК2, системы полива
Системы канализации
Перекачка нефтепродуктов
Вентиляторы Приточно-вытяжная вентиляция, ОВК2, вентиляторы
Компрессоры Системы вентиляции, холодильные и морозильные установки, ОВК2
Накопление и распределение сжатого воздуха, пневматические системы
Системы сжижения газа, системы перекачки природного газа
Вращение, смешивание, движение Прокатный стан, станки: обработка металла, камня, пластика
Прессовое оборудование: обработка алюминия, пластиков
Обработка текстиля: ткачество, стирка, сушка
Смешивание, взбалтывание: еда, краски, пластики
Транспорт Пассажирские лифты, эскалаторы, конвейеры
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога
Угловые перемещения (шаговые двигатели, серводвигатели) Вентили (открыть/закрыть)
Серво (установка положения)
Линейные электродвигатели Открыть/закрыть Вентили
Сортировка Производство
Хватать и перемещать Роботы

Примечание:

  1. ЭД — электродвигатель
  2. ОВК — системы отопления, вентиляции и кондиционирование воздуха

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

https://youtube.com/watch?v=Ue6cDpSOKu4

Электрооборудование

  • аккумуляторную батарею;
  • генератор;
  • систему зажигания;
  • световую оптику и систему освещения салона;
  • приводы электродвигателей вентиляторов, стеклоочистителей, стеклоподъёмников и других устройств;
  • обогрев стёкол и салона;
  • всю электронику автоматической коробки передач, бортового компьютера и защитных систем (ABS, SRS), управления двигателем и других;
  • гидроусилитель руля;
  • противоугонную сигнализацию;
  • звуковой сигнал.

https://youtube.com/watch?v=LaEVsfJUpFU

Это неполный перечень устройств, входящих в электрооборудование авто и потребляющих электроэнергию.

Устройство кузова автомобиля и всех его составных частей необходимо знать каждому водителю, чтобы поддерживать машину всегда в исправном состоянии.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Ротор асинхронного двигателя

Давайте более подробно рассмотрим, из чего же состоит ротор асинхронного двигателя.

Самая главная часть — это вал. Иначе, как бы происходило вращение?

На вал ротора с двух сторон надеваются подшипники, которые крепятся к передней и задней крышкам и центруют ротор ровно посередине статора.

Далее идет сердечник, набранный из листов специальной электротехнической стали, которые изолированы друг от друга. Кстати, сетевые трансформаторы собираются из такой же стали.

Как вы можете далее заметить, в сердечнике ротора есть специальные пазы

В них вставляются медные или алюминиевые стержни,

которые замыкаются на кольцо с обеих сторон, образуя так называемую «беличью клетку».

В общем виде полностью собранный ротор асинхронного двигателя выглядит вот так.

А вот так он выглядит в реальном двигателе.

Всегда помните, что в асинхронном двигателе вращается ротор, а не статор. Статор — это неподвижная часть, а ротор — подвижная часть электродвигателя. В рабочем состоянии двигателя между ротором и статором всегда имеется воздушный зазор. При работе двигателя ротор ни в коем случае не должен задевать статор двигателя.

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение. 

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации

Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)

Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Поршень двигателя состоит из трех основных частей:

  1. Днище поршня (воспринимает газовые силы и тепловую нагрузку);

  2. Уплотняющая часть поршня (поршневые кольца, которые препятствуют прорыву газов в картер и передают большую часть тепла от поршня цилиндру двигателя);

  3. Направляющая часть поршня (юбка) — поддерживает положение поршня и передаёт боковую силу на стенку цилиндра.

В обиходе автомобилистов часто встречается такое название, как головка поршня. Головкой поршня называют днище поршня с его уплотняющей частью.

Днище поршня

Основная рабочая поверхность детали, которая вместе со стенками гильзы цилиндров и головкой блока формирует камеру сгорания, в которой и происходит сгорание горючей смеси. Днище поршня может иметь различную конструкцию в зависимости от типа и особенностей двигателя.

Виды поршней

В двухтактных двигателях применяются поршни со сферической формой днища, что приводит к повышению эффективности наполнения камеры сгорания горючей смесью и улучшает отвод отработанных газов.

В четырехтактных бензиновых двигателях днище имеет плоскую или вогнутую форму. Углубления – выемки служат для улучшения смесеобразования и уменьшают вероятность столкновения поршня с клапаном.

В дизельных моторах углубления в днище более габаритные и имеют различные формы. Такие выемки называют поршневой камерой сгорания. В процессе работы в поршневых камерах сгорания создаются завихрения, которые способствуют улучшению качества смешивания топлива с воздухом.

Уплотняющая часть поршня

Уплотняющая часть поршня предназначена для установки компрессионных и маслосъемных колец, которые предназначены для устранения зазора между поршнем и стенкой гильзы цилиндров. 

Уплотняющая часть представляет собой проточки (канавки) в цилиндрической поверхности поршня. В двухтактных двигателях в проточки вставляются специальные вставки, в которые упираются замки колец, благодаря которым кольца не прокручиваются.

Число канавок, на уплотняющей части поршня, соответствует количеству поршневых колец. Чаще всего применяется конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным. В канавке под маслосъемное кольцо имеются специальные отверстия для стека масла, которое снимается маслосъемным кольцом со стенки гильзы цилиндра.

Неполадки двигателя

Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
 Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
 

  • У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
  • У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
  • Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
  • Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.

 Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:

  • Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
  • Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
  • В цилиндре имеются повреждения.

 Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
 
Регулярное техническое обслуживание может помочь избежать ремонта
 Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:

  • При износе свечи зажигания или ее провода может наблюдаться слабая искра.
  • При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
  • Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.

Могут возникнуть и другие неполадки. Например:

  • Если аккумулятор разряжен, Вы также не сможете завести двигатель.
  • Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
  • Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
  • Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
  • Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
  • В исправно работающем двигателе все эти факторы находятся в допустимых пределах.

Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

  1. Впуск топлива;
  2. Сжатие топлива;
  3. Сгорание;
  4. Вывод отработанных газов за пределы камеры сгорания.

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Особенности работы двигателя. Такты

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

Двухтактные дизели

Мало кто знает, что не так давно существовали и двухтактные дизели с сухим картером, которые успешно эксплуатировались в СССР до самых 90-х годов. Отличительной особенностью такого двухтактного двигателя являлось наличие газораспределительного механизма, который имел всего пару (или один) выпускных клапанов, а вот впуск осуществлялся классическим способом для двух тактов — через продувочные окна. К таким двигателям относятся ЯАЗ-204 и ЯАЗ-206 , танковые двигатели 5ТДФ (700 л.с) и 6ТДФ-2 (1200 л.с.) . Еще одно привлекательное отличие от бензинового собрата — продувка дизеля осуществлялась воздухом, а не рабочей смесью, как у бензинового варианта, поэтому экономичность дизельного двухтактника была сравнима с четырехтактным вариантом.

Мощность двухтактного двигателя при одинаковых размерах литровой ёмкости и частоте вращения вала примерно на 50-70% больше четырехтактного за счет большего числа рабочих циклов в единицу времени. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60…70% по сравнению с четырехтактным ДВС.