Принцип работы осцилографа, что такое осцилограф

Оглавление

Осциллограф Autoscope для начинающих диагностов

Н ачинающие диагносты искренне верят, что после приобретения осциллографа они, теперь то уж точно, смогут обнаружить любую неисправность. Но, частенько, после приобретения прибора появляется много вопросов. Причем, если даже удалось корректно записать осциллограмму, то не всегда получается разобраться с полученными графиками, с помощью осциллограф Autoscope.

Даже если богатенький владелец СТО «не пожлобился» и купил все необходимое оборудование, начинающие диагносты, частенько, оказываются в положении интернов из известного телесериала. И анализы все можно сделать, и процедуры, и лекарства под рукой. Вот, только, результат… Как писал в сети Юра Игнатенко, (более известный как GNAT), «…врачей много, а правильно расшифровать кардиограмму могут единицы…». И тогда, на профильных форумах, начинают появляться многочисленные сообщения с просьбой помочь проанализировать то, что наснимал начинающий… Получается, что «права купил, машину купил, а «ездить» не купил». Поэтому, попробую рассказать про свой скромный опыт в анализе и расшифровке осциллограмм.

Осциллограф, в нашем случае Autoscope Постоловского – это, фактически, графический вольтметр. Его отличие от вольтметра в том, что он показывает не только величину напряжения, но и как оно изменяется во времени, т.е. его форму. Соответственно, ось «Y» – это величина напряжения, а ось «Х» – это время. Если величина напряжения не меняется, мы увидим на мониторе горизонтальную линию. Если напряжение увеличивается, то эта линия пойдет вверх, а если уменьшается – то вниз.

Показания Autoscope — изменение формы напряжения

Особенно ценным осциллограф будет при анализе быстро протекающих процессов (например, сигналов датчиков) или сигналов имеющих, к тому же, еще и сложную форму (например, управления форсункой или катушкой зажигания).

Показания Autoscope — быстро меняющаяся осциллограмма вторичного напряжения катушки зажигания

Для того, чтобы уметь проанализировать осциллограмму нужно, прежде всего, знать и понимать протекающие процессы и приобрести определенный опыт.

Проблемы при создании осциллографа

Проблемы могут возникнуть как у новичка, так и у того, кто знает, как из обычного домашнего компьютера сделать осциллограф на практике. Чтобы минимизировать шансы, лучше изучить всю теорию перед работой или настройкой, а также купить материалы с запасом, если есть необходимость изготовить приставку.

Возможные трудности:

  1. Проблемы со схемой. Схема для простейшего осциллографа лёгкая сама по себе, но если возникают сложности, можно воспользоваться видеогайдами.
  2. Программы не устанавливаются. Если программное обеспечение отказывается работать на компьютере, проверьте совместимость (соответствие требованиям операционной системы, наличие всех необходимых деталей в ПК).
  3. Результат не выводится на экран. Это проблема внутренней настройки – укажите корректный путь, чтобы сохранение и воспроизведение результатов анализа шли корректно.

Большинство возникающих проблем легко решить последующими попытками, минимальными теоретическими знаниями и опытом – стоит только набраться немного терпения.

Устройство и принцип работы

Осциллограмма

Основной элемент аналогового осциллографа – специализированная ЭЛТ (электронно-лучевая трубка), которая делает возможным визуальное представление изучаемого сигнала. Он поступает на входной делитель (определяет диапазон измеряемых значений), усиливается и синхронизируется с генератором развертки, затем попадает на оконечный усилитель и входы ЭЛТ, отображение проходит в реальном времени. Конкретная реализация зависит от производителя, но принцип действия остается неизменным.


Функциональная схема осциллографа

Цифровые приборы устроены по-другому: пользователь видит уже преобразованные в цифру данные, полученные от АЦП (аналого-цифрового преобразователя) и записанные в буферную память, поэтому имеет возможность просмотреть динамику изменения сигнала не только после запуска, но и до пускового импульса. Есть возможность сохранить информацию для последующей обработки на компьютере.

Применение

Работа с осциллографом позволяет выполнять ряд действий, не связанных с визуализацией:

  • измерение амплитуды сигнала;
  • контроль временных интервалов;
  • настройку каналов звука в радиоаппаратуре;
  • наблюдение фигур Лиссажу;
  • курсорные измерения в современных моделях;
  • математические операции-функции;
  • захват строки телевизионного сигнала.

Это только некоторая часть опций, которые можно выполнить при помощи этого прибора.

Наблюдение фигур Лиссажу

При необходимости подстроить частоту сигнала одного источника под частоту другого применяют этот приём. Для работы используют два генератора частоты и осциллограф с опцией XY-режима. Фигуры Лиссажу – это рисунки, созданные точкой, колеблющейся в одной плоскости, но в двух взаимно-перпендикулярных направлениях.

Интересно. Если подать на каждый канал двухканального прибора сигналы от двух разных генераторов и включить на устройстве режим XY, то на экране получится фигура. Фигуры будут менять свои очертания в зависимости от кратности частот генераторов.

На практике метод используется для определения неизвестной частоты, при сравнении её с известной частотой. Зная, осциллограмма какого сигнала изображена на рисунке, по фигуре, которая получилась, можно определить искомый параметр.

Таблица с фигурами Лиссажу

Курсорные измерения

В аппаратах современного поколения имеется вспомогательный интерфейс в виде курсоров. Это прямые линии, выводимые на экран. Они могут быть расположены и перпендикулярно друг к другу. Курсор можно наводить на любую точку графика сигнала и видеть её координаты. Это уровень напряжения и момент времени по осям X и Y.

Курсорные измерения упрощают считывание характеристик исследуемых сигналов. Отпадает зависимость от подсчёта количества клеток по шкале и умножения на цену деления по обеим осям.

Математические функции

К математическим операциям с функциями, определяемым с помощью осциллографа, относятся:

  • сложение и вычитание;
  • абсолютное значение;
  • преобразования Фурье;
  • интегрирование.

Если остановиться на этих опциях, то сложение и вычитание мгновенных значений исследуемых осциллограмм выполняется быстро, результат выводится на экран в виде сигнала.

Следующая функция определяет абсолютное значение сигнала и отображает его в вольтах.

Определить гармонические частоты (компоненты сигнала) поможет математическая функция преобразование Фурье.

Интеграл исследуемого сигнала можно вычислить с помощью математической функции интегрирования.

Захват строки телевизионного сигнала

В осциллоскопах с ЭЛТ, а также в современных специальных моделях встречается особый режим – телевизионная синхронизация. Одну или несколько телевизионных строк можно отобразить на экране, выбрав их из видеопакета. При помощи таких осциллографов в телестудиях контролируют технические характеристики записывающей и передающей аппаратуры.

Ошибки при выборе и работе с осциллографом

Понимание, как пользоваться осциллографом, приходит только с практическим опытом работы, теоретических знаний недостаточно – нужно руками произвести все настройки, коммутацию и измерения. Цифровой прибор сильно облегчает процесс, но стоимость аппаратуры очень высока.

Важно! Не стоит приобретать старый советский прибор, т.к. погрешности измерений не дадут достоверных данных, откалибровать его уже не получится

Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может

Паспорт и руководство описывают, как работать с осциллографом, но здравый смысл никто не отменял: экспериментировать нужно осторожно

Устройство и принцип работы

Осциллограф своими руками

Основной элемент аналогового осциллографа – специализированная ЭЛТ (электронно-лучевая трубка), которая делает возможным визуальное представление изучаемого сигнала. Он поступает на входной делитель (определяет диапазон измеряемых значений), усиливается и синхронизируется с генератором развертки, затем попадает на оконечный усилитель и входы ЭЛТ, отображение проходит в реальном времени. Конкретная реализация зависит от производителя, но принцип действия остается неизменным.


Функциональная схема осциллографа

Цифровые приборы устроены по-другому: пользователь видит уже преобразованные в цифру данные, полученные от АЦП (аналого-цифрового преобразователя) и записанные в буферную память, поэтому имеет возможность просмотреть динамику изменения сигнала не только после запуска, но и до пускового импульса. Есть возможность сохранить информацию для последующей обработки на компьютере.

Измерение частоты

Частота — это временная характеристика, интервалы, периоды сигнала; их измерение — прямое назначение осциллографа. Исследуемое значение всегда обратно пропорционально его периоду, который можно замерить в любой области осциллограммы. Но комфортнее и точнее это сделать в точках пересечения графика с горизонталью по центру (ось времени).

Перед исследованием полосу развертки выставляем на центральную горизонталь. Используя ручку со стрелкой в обе стороны, смещаем начало периода с самой крайней левой полосой на мониторе. В нашем случае промежуток = 6.8 дел., скор. развертки — 100 мкс/дел. Исчисления:

Выше на схожих двух рисунках те же сигналы, но при разной скорости развертки. По первому изображению исчисление частоты (точное значение — 1.459 кГц) имеет большую погрешность, по второму — меньшую, так как большую точность при измерении получают, если растянуть картинку.

На втором рисунке период чуть превышает 6.8 дел. и частота в реальности чуть ниже (1.459 КГц), чем полученная (1,47 КГц). Отклонение меньше 1 %, это допустимо и считается высокой точностью, ее обеспечит цифровой O-Scope (с линейной разверткой). В аналоговых моделях отклонение было бы выше. Характерная закономерность: с увеличением периода снижается частота (пропорция обратная), и наоборот.

Устройство осциллографа и принципы его работы

Для лучшего понимания принципов его работы следует рассмотреть его устройство на схеме.

Рис.No2. Схема устройства осциллографа

К элементам прибора относят:

1. ЭЛТ (электронно-лучевую трубку);

Рисунок №3. Схема электронно-лучевой трубки.

Электронно-лучевая трубка представлена в виде стеклянной колбы, внутри которой вакуум. В колбе имеются электроды, отклоняющие пластины, а так же экран, на баллоне которого, его внутренней поверхности с торца, имеется люминофорное покрытие.

Аквадаг электронно-лучевой трубки это мелкодисперсный графит в водном растворе с гелеобразователями. Обеспечивает покрытие экрана электронно-лучевой трубки электростатическим полем.

Электроды играют роль электронной пушки с функцией приема электронного луча. Она представлена катодом с подогревателем, 2 анодами, управляющим и экранизирующим электродом. Баллон электронно-лучевой трубки

2. Блок питания;

3. Каналы вертикального (Y) и горизонтального (Х) отклонения и модуляции луча;

4. Генератор горизонтальной развертки. Он подаёт сигнал на пластины горизонтального отклонения. Сигнал нарастает линейно, а спадает быстро. С обратным движением луча происходит формирование импульса гашения луча электронов, подающегося на модулятор электронно-лучевой трубки;

5. Усилитель входного сигнала, подключенный к вертикально отклоняющим пластинам;

6. Блок синхронизации.

При включении осциллографа на вход подается сигнал. Здесь происходит обработка сигнала в аттенюаторе. Благодаря чему амплитуда сигнала не превышает установленные границы, что позволяет умещаться изображению на экране прибора.

Y-канал способен передавать сигнал на генератор горизонтального отклонения для обеспечения его синхронизации. Этот канал функционирует в режиме открытого типа, таким образом, уровень сигнала соответствует вертикальным отклонениям луча. Если Y-канал закрытый, то сигнал проходит через конденсатор беспрепятственно для напряжения.

Х-канал (горизонтального отклонения) соединен с генератором развертки. Система развертки способна обеспечивать синхронность сигналов несколькими вариантами, а именно:

  • Внутренней синхронизации. В этом случае частота устанавливается в ручную, а Х-канал работает с автоколебаниями. Используется для исследования сигналов со стабильной частотой;
  • Внешней. Входные импульсы запускают генератор. Исследует нестабильные сигналы;
  • От сети питания. Удобен при наличии помех от питающих устройств;
  • Одинарный запуск. Ручной способ.

И Х-канал, и Y-канал имеют усилители для формирования требуемого сигнала, подача которого осуществляется на ЭЛТ.

ЭЛТ (электронно-лучевая трубка) является основной частью данного прибора. Это стеклянная колба, внутри которой имеется катод, два анода, управляющий электрод, а так же отклоняющие пластины. Две из них горизонтальные, две вертикальные. Её основная функция – визуализация сигнала.

Блок питания обеспечивает необходимое напряжение электродов ЭЛТ, усилителей, генераторов и других устройств прибора.

Блок синхронизации обеспечивает получение стабильного графического изображения.

Это Интересно! Некоторые умельцы, занимающиеся радиотехникой самостоятельно собирают подобные приборы для личного пользования.

Типы осциллографов

Электронно-лучевые осциллографы подразделяются на:

  • Аналоговые;
  • Цифровые;
  • Аналоговые с цифровой обработкой сигнала.

Аналоговые осциллографы

Сначала, очевидно, появились аналоговые осциллографы, ведь для работы устройства использовались аналоговые детали. Они подавали вполне точное изображение формы сигнала. Однако замерять амплитуды и частоты совсем не могли. При определении этих характеристик создавалась нелинейность. Она создавалась из-за искажений, которые вносил входной тракт, и движения электронного луча вкупе с этим. Получаемые данные можно было использовать только для оценочного измерения. А наблюдение было возможно только в случае периодического сигнала.

С появлением ЭЛТ стало возможным организовать память на одно движение луча горизонтальной развёртки. Чтобы оценивать помехи импульсов и однократные сигналы, это было необходимо.

Цифровые осциллографы

Современные цифровые осциллографы имеют куда более широкие возможности. В них цифровой тракт обработки сигнала подаётся после входных цепей осциллографа на аналого-цифровой преобразователь. Этот алгоритм позволяет проводить самые точные измерения параметров, таких как частота следования, длительность импульсов, напряжение. А используя запоминающее устройство (USB-осциллограф), можно запоминать любые участки формы сигналов без специального оборудования.

Цифровые осциллографы бывают двух видов. Разделены они были по принципу использования тракта. У одних он был дополнением к аналоговым измерениям, у вторых – использовался для формирования изображения.

Устройства первого типа не отличаются от аналоговых, имея дополнительную опцию для измерения. Вторые же максимально сходны с цифровыми, имея отличие только в отображении информации.

Современные осциллографы для отображения информация используют жидкокристаллические дисплеи. Кроме формы сигнала на нём отображаются все параметры, которые устройство замеряет:

  • Среднее напряжение;
  • Амплитудное напряжение;
  • Фазовые сдвиги;
  • Длительность импульсов;
  • Длительность спада импульсов;
  • Длительность фронта.

Благодаря такому набору способностей один прибор может заменить большую часть других измерительных устройств.

Как ещё несколько полезных качеств цифровых осциллографов можно отметить:

  • Большие возможности для запоминания изображений;
  • Запоминание параметров сигналов в разные участки времени;
  • Хранение информации;
  • Вывод информации для печати;
  • Передача информации на внешний носитель.

Применение осциллографа

Осциллограф предназначен для изучения различных взаимосвязей между несколькими величинами. Отображаемая на экране осциллограмма показывает как изменяется форма напряжения во времени

Так, по ней можно легко определить полярность, амплитуду, длительность, скважность и частоту сигнала

В грубом приближении осциллограф работает как графический вольтметр. Он измеряет сигнал и выводит его форму на дисплей. Устройством можно измерить даже напряжение высокой частоты. Его основное назначение заключается использование поиска неисправностей в сложных радиоэлектронных схемах или исследовательских измерениях. Например, с помощью него возможно:

  • определять временные параметры;
  • изучать фазовый сдвиг;
  • фиксировать частоту сигнала;
  • наблюдать переменную и постоянную составляющую напряжения;
  • отмечать присутствие гармоник и их параметров;
  • выяснять процессы, происходящие во времени.

Таким образом, осциллограф нужен для того, чтобы можно было наглядно наблюдать колебания электротехнического сигнала, а также видеть помехи и искажения, тем самым определяя неисправный элемент в различных узлах по форме входного и выходного импульса. Кроме этого, осциллограф широко применяется при диагностике электродвигателей. Изучая генерации, возникающие при работе мотора, можно вычислить неисправность катализатора, выявить увеличенный подсос воздуха, отследить сигналы с различных датчиков.

Аналоговые осциллографы

Наиболее распространенными приборами среди электриков и энергетиков являются аналоговые осциллографы благодаря своей простоте, надежности и невысокой цене. Наиболее типичным представителем класса является двухканальный осциллограф Matrix модели MOS-620CH, производимый на крупнейшем заводе в г Шенжень (Китай). Благодаря своей простоте и надежности, а процент брака по данной продукции практически сведен к нулю, позволяет выполнять задачи, которые ставятся перед приборами подобного класса. Несмотря на кажущуюся простоту — осциллограф обеспечивает полосу от 0 до 20 МГц и чувствительность от 5 милливольт на деление. Недостатки данной модели свойственны всем аналоговым осциллографам — большие габариты и масса (8 кг), необходимость сетевого питания 220 Вольт, 35 Ватт, невозможность записи, анализа и передачи на компьютер записанных форм сигналов.

Типовые примеры использования технологии цифрового люминофора (DPO)

Существуют десятки практических задач, которые могут очень эффективно решаться при использовании осциллографа с технологией цифрового фосфора DPO. Чтобы наглядно продемонстрировать преимущества этой технологии, рассмотрим несколько самых распространённых примеров.

На этом скриншоте показан экран осциллографа серии Tektronix MDO4000C. Точка запуска по каналу 1 установлена на 470 мВ. На экране мы видим сигнал в диапазоне от 1 мкс до момента запуска и до 1 мкс после момента запуска. Одновременно на экране представлены результаты срабатывания тысяч запусков. То есть статистическая картина изменения сигнала очень подробная. Как мы видим по градациям цветности, небольшой процент времени сигнал имеет сниженное значение амплитуды — она плавает, периодически уменьшаясь приблизительно в два раза. На такое измерение осциллографу с DPO надо менее 1 секунды.

Пример быстрого обнаружения плавающей амплитуды сигнала с помощью технологии DPO.

А вот ещё один пример работы технологии DPO в осциллографе серии Tektronix MDO4000C. В данном случае измеряемый меандр имеет стабильную амплитуду, но плавающую частоту. Судя по уровню размытия фронта пятого от точки запуска периода меандра, частота изменяется приблизительно на 10%. С помощью маркеров осциллографа можно провести более точные измерения. Также на осциллограмме виден небольшой переходной процесс, возникающий при резком изменении амплитуды из одного состояния в другое.

Пример обнаружения с помощью технологии DPO изменяющейся частоты сигнала.

Как уже упоминалось выше, технология цифрового люминофора DPO великолепно справляется с поиском редко возникающих аномалий сигналов: глитчей, рантов, сбоев синхронизации и т.п. На этом скриншоте осциллографа серии Tektronix DPO7000C чётко видно два дефекта сигнала: короткий глитч в начале сигнала и через 150 нс после глитча второй дефект — рант сигнала (импульс, имеющий меньший уровень, чем все остальные импульсы последовательности). Судя по голубому цвету глитча и ранта, они возникают неоднократно, однако значительно реже, чем основной сигнал.

Пример обнаружения глитча и ранта сигнала с помощью технологии DPO.

Ещё одно распространённое применение технология DPO находит в проверке соответствия стандартам формы сигналов скоростных цифровых интерфейсов: PCI Express, USB, Serial ATA, Ethernet IEEE 802.3, ANSI X3.263, Sonet/SDH, Fibre Channel, InfiniBand, Serial Attached SCSI, ITU-T/ANSI T1.102, IEEE 1394b, RapidIO, OIF Standards, Open Base Station Architecture Initiative (OBSAI), Common Public Radio Interface (CPRI) и др.

На этом скриншоте осциллографа серии Tektronix DPO70000 показан пример тестирования сигнала шины PCI Express. В качестве критериев соответствия используется маска, параметры которой прописаны в соответствующем международном стандарте. Высокая достоверность проверки достигается за счёт анализа сотен тысяч осциллограмм в секунду, что гарантирует обнаружение даже самых неуловимых отклонений.

Пример проверки соответствия формы сигнала шины PCI Express с помощью технологии DPO.

И, конечно, эффект цифрового люминофора DPO можно в любой момент отключить. Например, при захвате и декодировании длительных цифровых последовательностей он просто не нужен. Для этого на передней панели DPO осциллографов есть специальная кнопка или отдельный пункт меню. На этом скриншоте показан экран осциллографа серии Tektronix MDO3000 при выключенном цифровом фосфоре. Мы видим «обычный» меандр без градаций цветности. Под сигналом располагается таблица с автоматически измеренными параметрами этого меандра: частотой, напряжением от пика до пика и количеством положительных импульсов.

Пример экрана DPO осциллографа с отключённым эффектом цифрового фосфора.

Существует множество других реальных задач, в которых технология цифрового фосфора DPO существенно упрощает работу разработчика и делает её более эффективной. Если сравнивать аналоговый осциллограф, обычный цифровой DSO и осциллограф с поддержкой DPO, то DPO является наиболее универсальным решением, которое полностью обеспечивает все возможности аналоговых и обычных цифровых моделей, плюс содержит дополнительные мощные инструменты.

Основные параметры

Для выбора осциллографа рекомендуется правильно оценивать следующие характеристики:

  • чтобы исключить искажения при работе с несколькими высокочастотными сигналами, следует приобрести двух,- или многолучевой прибор;
  • в разных моделях погрешность составляет 5-15%, поэтому следует учитывать ограниченную точность измерений;
  • цифровые аппараты оснащают цветными экранами, разнообразными устройствами для синхронизации, дополнительными сервисными режимами;
  • функциональность аналоговых приборов скромнее, но стоят они дешевле;
  • ограниченные возможности амплитудно-частотных преобразователей затрудняют качественную обработку цифровой электроникой высокочастотных сигналов;
  • режим застывшей картинки с функцией увеличения поможет изучить мельчайшие детали сложных изображений.

Перед детальным анализом нужно уточнить, для чего именно предназначается прибор. Далее оценивают соответствие по следующим параметрам:

  • полоса пропускания;
  • частотный диапазон;
  • входное сопротивление;
  • допустимые значения амплитуды (переменной и постоянной составляющей);
  • погрешность измерений;
  • развязка между каналами;
  • объем внутренней памяти (цифровая техника).

Устройство

Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.

Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.

Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.

Устройство и основные технические параметры

Каждый прибор имеет ряд следующих технических характеристик:

  1. Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
  2. Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
  3. Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
  4. Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
  5. Значения переходной характеристики, показывающие время нарастания и выброс.

Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.

Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.

Как функционирует осциллограф

Если смотреть на быстро пробегающие объекты, то увидим размытую линию. Но если периодически открывать «окошко», то будут выхватываться статичные кадры. Это принцип стробоскопа, так же, но в электронной форме работает Oscilloscope.

Действие «окошка» синхронизуется (главное условие) со скоростью объектов (сигнала), поэтому при его открытии их место стабильно. В противном случае возникнет рассинхронизация.

Аппарат визуализирует периодические изменения в реальном времени на табло синусоидой или линией другой формы (пила, меандр и прочее). Каждый будущий отрезок схожий с прошедшим, он «останавливается» и показывается (в 1 момент — 1 период).