Какой датчик отвечает за обороты двигателя?

Оглавление

Диагностика

Признаки поломки датчика числа оборотов свойственные и неполадкам многих других узлов, что обуславливает необходимость комплексной диагностики ДВС.

Самый простой способ, показывающий результат со стопроцентной точностью, — использовать диагностический сканер, подключаемый к разъему ODBII который есть в каждом современном автомобиле с ЭБУ. Прибор считает ошибки, покажет код поломки, который расшифровывается в спецификации конкретной марки.

Первым делом осматривают сам датчик количества оборотов ДВС автомобиля. Если замечены следы грязи, стружки на торце, отошедшие контакты и крепление, производят чистку, устанавливают прибор должным образом. Затем — подключить сканер, считать им коды. Цифровая комбинация неисправности именно ДПКВ часто PO335 или 0336 в зависимости от наличия сигнала от узла. Могут быть иные варианты для конкретной модели авто, например, в буфере ошибок может отобразиться код 35 или 19.

При обнаружении ошибок их удаляют из памяти ЭБУ и проводят тест-драйв — так проверят, появятся ли они снова. Если есть повторное выявление сбоев, приступают к анализу непосредственного самого детектора синхронизации оборотов иными способами.

Что отслеживает датчик вращений и положения коленвала

Детектор оборотов двигателя передает на ЭБУ следующее:

  • объем впрыскиваемого топлива в конкретный момент;
  • кода появляется сам момент впрыска;
  • оптимальное время для активации клапана адсорбера, длительность его работы;
  • момент и угол опережения зажигания, угол поворота КВ.

ДПКВ — это единственный датчик, выход из строя которого, среди прочих схожих для неполадок сенсоров последствий, приведет к полной остановки двигателя. Именно он позволяет системе определить, когда на свечах зажигания создавать искровой заряд.

Где находится датчик оборотов

Детектор оборотов, он же индукционный измеритель расположен, как правило, над маркерным (реперным) колесом, зубчики которого выполняют для него роль сигнализатора. Установлен в таких местах:

  • маховик;
  • коленвал, внутри сегмента цилиндров (часто так у Ford, Opel);
  • с фронта моторной части на КВ, со шкивом привода дополнительных узлов (Jaguar, BMW, ВАЗ и так далее).

Маркерные выступы реперного колеса могут предназначаться только для измерения оборотов ДВС (лучший вариант), а также их роль могут выполнять выступы на стартерном узле (Audi, Volvo). У некоторых моделей измеритель оборотов заменяет сенсор Холла, тогда обычно устройство находится вблизи распредвала.

Место сенсора синхронизации неудобное, поэтому он имеет длинный (до 70 см) кабель с разъемом, само устройство крепится на кронштейне. Стандартное его место — около шкива привода генератора.

Сложности с идентификацией

Приведем пример, как владельцем Audi 100 2.6 описана вариация разных сенсоров. Измеритель оборотов тут обозначен как G28, но также есть отдельный детектор для КВ (G4):

Ниже на рисунке упоминаемый отдельный датчик G4, а соотношение по месту его расположения к G28 показано на фото выше:

Учитывая сказанное, для начала желательно ознакомиться со схемой силовой системы по спецификации конкретной модели машины.

Конструкция и общий принцип работы автомобильного сенсора оборотов

При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.

На Toyota:

Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).

Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:

  1. Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
  2. Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
  3. Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
  4. При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
  5. Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.

Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.

Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.

Ниже рассмотрим виды ДПКВ и их нюансы.

Индуктивные датчики скорости вращения

  1. Постоянный магнит
  2. Корпус датчика
  3. Корпус двигателя
  4. Полюсный контактный штифт
  5. Обмотка
  6. Воздушный зазор
  7. Зубчатое колесо с точкой отсчета

Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.

Неисправности датчика оборотов двигателя

Первым признаком неисправности датчика оборотов или его цепей является отсутствие искры, отсутствие впрыска форсунками, не происходит включение бензонасоса при проворачивании двигателя стартером (нет управляющих сигналов и коммутации системных реле). Встречаются и исключения. При неисправности в цепях датчика оборотов ЭБУ двигателем переходит в аварийный режим работы и ориентируется по датчику распредвала (ОПЕЛЬ). Бывают случаи, когда при установке на автомобиль заведомо исправного двигателя, вместо неисправного, не даёт результат. Двигатель не запускается, т.к. система управления осталась от предыдущего двигателя, в котором зубчатый диск имеет другое количество зубьев (Пример установки мотора: Opel C20NE вместо механически аналогичного-20SE).

В индукционных датчиках случаются обрывы обмотки. Проверяются обычно на наличие сопротивления. При сбоях в системе искрообразования необходимо проверить количество и качество маркерных зубьев и сравнить со справочными данными, т.к. иногда без мысли меняются маховики, коленвалы и т.п., не обращая внимания на то, что на них присутствуют маркерные части.

Датчики Холла выходят из строя из-за неисправности электрической части.

Принцип работы

Рассмотрим часто встречающиеся виды датчиков оборотов, которые расположены вне распределителя зажигания.

Индукционные датчики или датчики генераторного типа более распространены и имеют несколько типов конструктивного исполнения. На рисунке изображён в разрезе такой датчик.

На рисунке ниже показана осциллограмма датчика оборотов. Маркерный диск имеет строго определённое количество зубьев.

При прохождении зуба маркерного диска вблизи сердечника датчика, изменяется величина магнитного потока. Для синхронизации, т.е. точного определения верхней мёртвой точки и вычисления величины опережения зажигания, на диске отсутствует один зуб. На осциллограмме этот момент определяется отсутствием сигнала. Для ЭБУ двигателем это информация, что ВМТ через такой-то угол поворота коленвала (для ВАЗ — 19 зубьев), т.е. сели пропуск зуба поместить под датчиком оборотов, то сосчитав 19 зубьев в сторону вращения двигателя, мы должны оказаться под меткой ВМТ на блоке.

Магнитоэлектрический датчик Холла используют для получения импульсов напряжения при прохождении сильногоцилиндрического экрана между постоянным магнитом с одной стороны и полупроводником, по которому протекает ток — с другой.

В некоторых конструкциях крыльчатка-экран не используется, а магнит крепится на подвижном элементе и при прохождении магнита вблизи чувствительного элемента датчика Холла, на его выходе появляется импульс напряжения.

Примером может служить MRE/Hall датчик коленвала, осциллограмма которого приведена на рисунке ниже. Напряжение питания 5 В.

Все основные датчики в двигателе автомобиля, и за что они отвечают (список)

С появлением инжекторной системы подачи топлива количество датчиков в конструкции автомобиля значительно увеличилось. Электронный блок управления двигателем получает и обрабатывает большое количество информации, что необходимо для правильной работы всех систем. Но далеко не все водители знают о том, какие датчики имеются в конструкции автомобиля, и для чего они предназначены. Я решил рассказать о всех основных элементах, что позволит автолюбителям самостоятельно диагностировать неисправность.

Датчик массового расхода воздуха (ДМРВ) — располагается за воздушным фильтром и определяет количество проходящего воздуха. Необходим для формирования оптимальной топливно-воздушной смеси. Данные с ДМРВ передаются в ЭБУ, который корректирует подачу топлива в соответствии с ними.

Датчик положения дроссельной заслонки (ДПДЗ) — считывает информацию о том, в каком положении находится дроссельная заслонка. Положение заслонки зависит от уровня нажатия на педаль газа. Данные с датчика позволяет корректировать объем подачи топлива.

Датчик положения коленчатого вала (ДПКВ) — считывает положение и обороты коленвала двигателя. Пожалуй, этот датчик можно назвать единственным, выход из строя которого приведет к полной невозможности запуска двигателя . Показания с ДПКВ позволяют ЭБУ определять момент для впрыска топлива и угол опережения зажигания. Также информация с датчика отображается на тахометре.

Датчик положения распределительного вала (ДПРВ) — находится в районе распредвала и позволяет определить положение цилиндров в верхней точке. Данные с ДПРВ позволяют определить, в какой цилиндр нужно подать топливо и включить зажигание.

Датчик детонации — датчик, определяющий детонацию в камере сгорания. Детонация влечет за собой серьезную нагрузку на двигатель и способна разрушать его изнутри. Датчик улавливает чрезмерные колебания, при возникновении которых корректируются топливная смесь и угол опережения зажигания.

Датчик температуры охлаждающей жидкости (ДТОЖ) — определяет температуру ОЖ в системе. Данные с ДТОЖ позволяют быстрее прогревать холодный двигатель за счет увеличенных оборотов холостого хода, а при достижении установленной температуры ЭБУ включает принудительное охлаждение вентилятором во избежание перегрева.

Датчик кислорода — располагается в выпускной системе. На современных автомобилях имеются два или более датчиков. Их применение связано с экологическими стандартами. Первый датчик кислорода находится перед катализатором, второй за ним. В зависимости от показаний позволяет корректировать топливную смесь и определять неисправность катализатора.

Датчик скорости — обычно располагается рядом с КПП или колесом. Определяет количество вращений вала, за счет чего ЭБУ отображает текущую скорость на приборной панели. Сейчас его функцию могут заменять другие датчики, например, датчик АБС.

Датчик давления масла — расположен в масляной системе и определяет давление. Никакие параметры на его основе не корректируются, но при возникновении слишком низкого давления на приборной панели загорится лампочка «маслёнки».

Датчик абсолютного давления (ДАД) — считывает показатели давления во впускном коллекторе, за счет чего корректируется состав топливно-воздушной смеси.

Датчик положения кузова (датчик неровной дороги) — располагается на кузове автомобиля и позволяет определить движение по неровной дороге. Так как подобный режим движения может повлечь за собой пропуски зажигания на приборной панели должна загореться характерная ошибка. Но ЭБУ понимает, что автомобиль едет по неровностям, поэтому не отображает ошибку.

Устройство ДПКВ

Деталь представляет собой стальной сердечник с обмоткой из медной проволоки, размещенный в пластиковом корпусе и залитый компаундной смолой.

Выпускаются 3 типа датчиков синхронизации:

  1. Индукционные. Принцип работы основан на использовании намагниченного сердечника с намотанной на нем медной проволокой, на концах которой замеряют изменение напряжения. Кроме фиксации положения коленвала, он замеряет скорость его вращения, что также необходимо для качественной работы ДВС. Индукционные датчики являются наиболее распространенными и часто применяющимися в устройстве автомобиля.
  2. Оптические. В основе их конструкции — светодиод, который излучает световой поток, и приемник, фиксирующий свет с другой стороны. При попадании светового луча на контрольный зуб он прерывается, приемник фиксирует его отсутствие, и информация передается в ЭБУ.
  3. Датчик Холла. Работает на основе одноименного физического эффекта. На коленчатом валу размещен магнит, при прохождении им датчика в последнем возникает постоянный ток, фиксируемый синхронизирующим диском.

Многофункциональность прибора индукционного типа и датчика Холла делают их наиболее востребованными в конструкции современных моторов.

Разновидности автомобильных датчиков оборотов двигателя

Есть несколько типов автомобильных измерителей вращений двигателя по принципу создания и регистрации изменений в чувствительной среде.

Индукционные (индуктивные)

Индуктивные датчики синхронизации оборотов двигателя самые простые, распространенные, дешевые, но это не уменьшает их эффективность.

Основной элемент индукционных детекторов числа вращений ДВС — катушка, намагничивающая сердечник и создающая магнитные потоки.

В следующем объяснении цифровые ссылки на рисунок ниже. Индуктивный датчик синхронизации устанавливается сразу напротив зубчатой ферромагнитной части КВ (7). На ней также есть небольшой воздушный зазор (место, где отсутствуют выступы). Датчик внутри состоит из стального намагниченного сердечника (полюсный контактный стержень, 4), с обмоткой тонкой медной, изолированной эмалью, проволокой (5), наподобие как у трансформаторов. Данный элемент связан с постоянным магнитом (1).

Алгоритм работы:

  1. Полюсный контактный штырь распространяет магнитополе, которое проходит на зубчатый вал.
  2. Зубцы задевают магнитопоток, идущий через катушку, его свойства на выступах и впадинах меняются. На первых этот рассеиваемый поток становится более концентрируемым (пучок). На вторых, наоборот, осуществляется ослабление указанного явления.
  3. Вышеуказанные трансформации индуцируют на витках обмотки выходное переменное напряжение с определенной синусоидой. Величина пропорциональная скорости и количеству оборотов (рис. 2). Амплитуда быстро растет с их повышением (от нескольких мВ до 100 В и больше). Достаточное значение образовывается, начиная с минимального числа вращений от 30/мин.

Оптические

Конструкция состоит из ИК-светодиода с установленным напротив него приемником. Между элементами — зубцы коленвала. Линия излучения пересекается этими выступами, что фиксирует приемник и отправляет соответствующий импульс на ЭБУ. Применяются реже.

Активные

Далее рассмотрим так называемые «активные» датчики вращений мотора, работающие по магнитостатическому методу. При них на амплитуду выходного импульса не влияет число оборотов, поэтому становятся доступными измерения интенсивности поворотов КВ при чрезвычайно низком количестве таковых (квазистатический мониторинг). Такие изделия намного более продвинутые, с расширенными возможностями.

Датчики числа вращений двигателей с дифференциальными детекторами Холла

На токопроводящей пластине, пропускающей в вертикальном направлении магнитную индукцию, поперечно к течению тока можно фиксировать пропорциональное его направлению, так называемое напряжение Холла.

Рисунок со схемой данного варианта выше. В таком дифдатчике ДПКВ поле создается постоянным магнитом (1). Два сенсора Холла (2 и 3) размещены между магнитом и кольцом, продуцирующим импульсы (4). В магнитопотоке происходят изменения в зависимости от того, что оказывается на нем — впадина или зубец. Разностью сигналов двух сенсоров снижается возмущение, уровень отклонений, улучшается соотношение сигнала и шума. Боковые участки сигнала могут анализироваться без оцифровки прямо на блоке управления.

Зубчатые колеса синхронизации могут быть не только ферромагнитными, но и многополюсными, где немагнитный носитель из металла снабжен кусочком специального пластика, который попеременно намагничивается. Северные и южные полюсы такого элемента выполняют роль делений.

AMR

Чувствительная часть AMR сенсоров синхронизации оборотов автомобиля сделана из магниторезистивного состава.

АМР — анизотропный магниторезистивный. Первый термин означает, что электросопротивление этого материала зависит от направленности воздействующего магнитополя. Такой сенсор установлен между магнитом и импульсным диском (аналог зубчатого, как при индуктивных сенсорах).

При вращении импульсного активного диска линии поля изменяют свои параметры, что формирует синусоидальное напряжение, усиливаемое схемой обработки данных, преобразовываемое ею в импульс прямоугольной геометрии.

GMR

В данном случае применяется инновационная технология Giant Magneto-Resistance. Такой сенсор намного чувствительнее, чем AMR — тут возможны значительные воздушные промежутки.

GMR-датчики оборотов двигателя применяются для сложных условий, высокая сенситивность создает меньше шумов, погрешностей сигнала.

Продвинутые ГМР детекторы оснащают двухпроводными портами, они же иногда встречаются в сенсорах вращения Холла.

Дополнительные датчики

ДАД

Датчик абсолютного давления находится во впускном коллекторе или закрепляется на автомобильном кузове, соединяясь с впускным коллектором гибкой трубочкой. Задача ДАД  – измерение давления во впускном коллекторе. На основе этих данных ЭБУ рассчитывает расход воздуха двигателем, образуя идеальные параметры топливно-воздушной смеси. Фактически, он заменяет ДМРВ, но иногда работает с ним в паре, сообщая дополнительную информацию.

ДНД

Датчик неровной дороги прикрепляется к кузову возле крепления одного из амортизаторов. Он улавливает колебания в вертикальной плоскости при движении автомобиля, определяя, что он двигается по неровной дороге. Данный от датчика поступают в блок управления и он  отключает функцию диагностики пропусков зажигания, которая работает при неравномерном вращении коленвала.

Если какой-либо из датчиков неисправен, ЭБУ дает команду перехода в аварийный режим работы. При этом недостающая информацию заменяется усредненными данными, вшитыми в его память. Это не касается ДПКВ, при котором двигатель не работает. О том, что какой-то датчик вышел из строя предупреждает лампочка, загорающаяся на приборной панели с надписью CHECK или CHECK ENGINE. Чтобы понять, что именно происходит с автомобилем, требуется провести компьютерную диагностику ЭБУ.

Что измеряют датчики скорости и частоты вращения

До определенного момента эта форма дат­чика позволяет измерять мгновенную скорость в точках на окружности и, соот­ветственно, регистрировать очень мелкие угловые доли. Примерами относительной частоты враще­ния являются частота вращения коленчатого или распределительного вала двигателя, частота вращения кулачкового вала топлив­ного насоса высокого давления дизеля, ча­стота вращения колес автомобиля (ABS, TCS, ESP). Измерения в основном выполняются с помощью системы инкрементных датчиков, состоящей из шестерни и датчика частоты вращения.

Формы датчиков скорости


Используются различные формы датчиков (рис. «Различные формы датчиков» ): стержневые, вильчатые и кольцевые (внутренние и внешние). Благодаря простоте монтажа, самым распространенной формой датчика является стержневая. Стержневой датчик размещается рядом с ротором, зубья которого приближаются к нему и проходят в непосредственной близости. Однако датчики такой формы имеют самую низкую чувстви­тельность измерений. В некоторых случаях допускается использование вильчатых датчи­ков, нечувствительных к осевому и радиаль­ному люфту. В установленном состоянии этот датчик должен быть примерно совмещен с ротором. Тип датчика, в котором датчик окру­жает вал ротора в форме кольца, уже практи­чески не используется.

Требования к новым датчикам скорости

Во многих отношениях более ранние тра­диционные датчики индуктивного типа по­казывают очень неудовлетворительные ре­зультаты.


Они выдают амплитуду, зависимую от частоты вращения, и поэтому непригодны для низких оборотов, допускают лишь от­носительно небольшие допуски воздушного зазора, и большей частью неспособны отли­чить колебания зазора от импульсов частоты вращения. По крайней мере, конец датчика- из-за своей близости к тормозу (в случае с датчиками скорости вращения колес), дол­жен быть стойким к высоким температурам. Эти недостатки находятся позади дополни­тельных функций, на которые нацелено но­вое поколение датчиков:

  • Статическое определение (т.е. при нуле­вой скорости: сверхмалые обороты колен­чатого вала или частота вращения колес);
  • Эффективное измерение в больших зазорах (не совмещенный монтаж с зазорами> 0);
  • Небольшой размер;
  • Эффективная работа независимо от колебаний зазора;
  • Термостойкость до 200 °С;
  • Определение направления (опция для системы навигации);
  • Определение опорной метки (зажигание).

Магнитостатические датчики (датчики Холла, магниторезисторы, AMR) очень хорошо отвечают первым двум требованиям. И, как правило, они также обеспечивают соответствие второму и третьему требованиям.

На рис. «Схема расположения датчиков, нечувствительных к колебаниям воздушного зазора» показаны три, в принципе, прием­лемые формы датчиков, обычно нечувстви­тельные к колебаниям зазора. Здесь следует различать датчики с радиальным и танген­циальным считыванием. Это означает, что, независимо от зазора, магнитостатические датчики всегда смогут отличить северный и южный полюса магнитноактивного полюс­ного колеса или роторного кольца. В случае с магнитнопассивными роторами знак выход­ного сигнала уже не будет зависеть от зазора при регистрации напряженности тангенци­ального поля (хотя тот факт, что зазор часто увеличивается из-за ротора, является здесь недостатком). Однако часто используются также радиально измеряющие градиентные датчики, которые по сути лишь регистрируют градиент радиального поля, изменяющий свой знак не при изменении зазора, а только при изменении угла поворота.

Советуем изучить — § 109. зависимость сопротивления проводника от температуры. сверхпроводимость

Роторы

Ротор имеет ключевое значение для измере­ния скорости вращения; однако он обычно поставляется автопроизводителем, в то время как сам датчик приходит от постав­щика. До недавних пор почти исключительно использовались магнитнопассивные роторы, состоящие из магнитомягкого материала, обычно железа. Они дешевле магнитотвер­дых полюсных колес и проще в обращении, поскольку не намагничиваются, и нет опас­ности взаимного намагничивания (например, во время хранения). Как правило, при оди­наковых инкрементной ширине и выходном сигнале, внутренний магнетизм полюсного колеса (полюсное колесо определяется как магнитноактивный ротор) допускает значи­тельно больший зазор.

Настройка частотных входов

Частотный вход предназначен для подключения измерительных датчиков, у которых при изменении измеряемого параметра меняется частота выходного сигнала. Примерами таких датчиков являются врезные датчики уровня топлива, температурные датчики.

Частотные входы можно настроить на следующие типы датчиков:

  • Частота – произвольный датчик с частотным выходом.
  • Уровень топлива – особый алгоритм фильтрации для датчиков уровня топлива.
  • Обороты двигателя – для подключения входа тахометра.

Тип Частота

При выборе типа Частота (рис. 2) доступны следующие параметры:

  • Порог создания записи – новое значение сохраняется и передается на сервер только при отличии измеренного (после фильтра) значения от последнего сохраненного не меньше, чем этот порог. Рекомендуемое значение следует выбирать исходя из необходимой точности измерения датчика.
  • Длина фильтра – время, за которое усредняется измеренное значение со входа, в секундах.


Рисунок 2 –

Тип Уровень топлива

При выборе типа Уровень топлива (рис. 3) доступны следующие параметры:

  • Нижняя граница входных значений (Гц) – минимальное значение напряжения на выходе датчика уровня топлива.
  • Верхняя граница Входных значений (Гц) – максимальное значение напряжения на выходе датчика уровня топлива.

При выходе напряжения за эти границы терминал не передает состояние входа до возвращения в разрешенный диапазон. Используется для фильтрации ложных данных при выключении питания датчика.

Порог создания записи (Гц) – новое значение сохраняется и передается на сервер только при отличии измеренного (после фильтра) значения от последнего сохраненного не меньше, чем этот порог. Рекомендуемое значение для врезного датчика уровня – 0,3% от рабочего интервала.

Рисунок 3

Обратите внимание! Работа датчика уровня топлива зависит от датчика движения, который настраивается на акселерометре. Во время стоянки датчик более чувствителен к изменениям, чтобы не пропустить заправку или слив топлива

В движении — более грубый фильтр, чтобы сгладить скачки от вибрации и наклона ТС.

Тип Обороты двигателя

При выборе типа Обороты двигателя (рис. 4) доступны следующие параметры:

  • Коэффициент Гц => об/мин – коэффициент перевода частоты сигнала на входе в частоту вращения двигателя. В случае, если каждому обороту двигателя соответствует 1 импульс на выходе датчика – коэффициент равен 60. Если одному обороту соответствует более одного импульса – коэффициент пропорционально уменьшается.
  • Порог заведенного двигателя – минимальная частота вращения двигателя, при которой его можно считать заведенным.
  • Порог холостых оборотов – минимальная частота вращения двигателя, при которой можно считать, что он находится в рабочем режиме (не на холостых оборотах).
  • Порог критических оборотов – минимальная частота вращения двигателя, которую можно считать опасной при длительной работе.
  • Величина гистерезиса – запаздывание срабатывания входа при пересечении порога и последующем пересечении в обратную сторону.

При типе датчика Обороты двигателя сохранение значения происходит при:

  • переходе одного из трех настраиваемых порогов;
  • в случае если обороты находятся в диапазоне между порогом холостого хода и порогом критических оборотов, то значения с датчика приходят при изменении значения на величину, указанную в поле «Величина гистерезиса». Например, если настройки датчика соответствуют тому, что указано на рисунке 4, то в диапазоне с 800 до 6000 данные с датчика будут приходить с порогом создания записи 100 об/мин.

Это позволяет отслеживать режимы работы двигателя при сохранении умеренного использования трафика.

Рисунок 4