Шкалы температур

Оглавление

Термины

  • Энтропия – мера того, как равномерная энергия располагается в системе.
  • Термодинамика – отрасль в науке, изучающая тепло и его соотношение с энергией и работой.

Абсолютный ноль – минимальная температура, при которой энтропия достигает наименьшего значения. То есть, это самый маленький показатель, который можно наблюдать в системе. Это универсальное понятие и выступает нулевой точкой в системе единиц температуры.

График зависимости давления от температуры для разных газов с постоянным объемом. Заметьте, что все графики экстраполируются к нулевому давлению при одной температуре

Система в абсолютном нуле все еще наделена квантово-механической нулевой энергией. Согласно принципу неопределенности, положение частичек нельзя определить с абсолютной точностью. Если частичка смещается в абсолютном нуле, то все еще обладает минимальным энергетическим запасом. Но в классической термодинамике кинетическая энергия способна быть нулевой, а тепловая исчезает.

Нулевая точка термодинамической шкалы, вроде Кельвина, приравнивается к абсолютному нулю. Международное соглашение установило, что температура абсолютного ноля достигает 0K по шкале Кельвина и -273.15°C по шкале Цельсия. Вещество при минимальных температурных показателях проявляет квантовые эффекты, вроде сверхпроводимости и сверхтекучести. Наиболее низкая температура в лабораторных условиях составляла 10-12 K, а в естественной среде – 1K (быстрое расширение газов в туманности Бумеранг).

Стремительное расширение газов приводит к минимальной наблюдаемой температуре

Абсолютный ноль температур

Абсолю́тный ноль температу́ры
— это минимальный предел температуры , которую может иметь физическое тело. Абсолютный ноль служит началом отсчёта абсолютной температурной шкалы , например, шкалы Кельвина . По шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.

Считается, что абсолютный ноль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки . Однако, на самом деле, даже при абсолютном нуле температуры регулярные движения составляющих вещество частиц останутся . Оставшиеся колебания, например нулевые колебания , обусловлены квантовыми свойствами частиц и физического вакуума , их окружающего.

В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный ноль всего на несколько миллионных долей градуса; достичь же его самого, согласно законам термодинамики, невозможно.

Температурные шкалы

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t и кипения воды tk при нормальном атмосферном давлении (Па≈105 Па). Величины t и tk имеют разные значения в различных видах шкал измерения температуры:

Согласно шкале Цельсия (стоградусная шкала): температура кипения воды tk=100 °C, температура плавления льда t0 =0 °С. В шкале Цельсия температура тройной точки воды равна 0,01 °С при давлении 0,06 атм.

Определение 5

Тройная точка воды — такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

Согласно шкале Фаренгейта: температура кипения воды tk=212 °F; температура плавления льда t0 =32 °С.

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

t °C100=t °F-32180 или t °F=1,8 °C+32.

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 111.

Согласно шкале Кельвина: температура кипения воды tk=373 К; температура плавления льда t0=273 К. Здесь температура отсчитывается от абсолютного нуля (t=273,15 °С) и ее называют термодинамической или абсолютной температурой. Т=0 К – такому значению температурысоответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T (K)=t °C+273,15 °C.

Согласно шкале Реомюра: температура кипения воды tk=80 °R; температура плавления льда t0=0 °R. В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

1 °C=,8 °R.

Согласно шкале Ранкина: температура кипения воды tk=671, 67 °Ra; температура плавления льда t0 =491,67 °Ra. Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180.

Температуры по Кельвину и Ранкину связаны выражением:

°Ra=°F+459,67.

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

°Ra=°F+459,67.

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как °C).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры — градус Кельвина (до 1968 г.) или сейчас просто Кельвин (К), являющийся одной из основных единиц в СИ. Температура T= К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна (T=, p=). При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Пример 2

Принято, что комфортная для человека температура в помещении находится в интервале от +18 °С до +22 °С. Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T (K)=t °C+273,15 °C.

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T=18+273≈291 (K);T=22+273≈295 (K).

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К.

Пример 3

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Рисунок 2

Возьмем за основу соотношение t°F=1,8t °C+32.

По условию задачи температур равны, тогда возможно составить следующее выражение:

x=1,8x+32.

Определим из полученной записи переменную x:

x=-32,8=-40 °C.

Ответ: при температуре -40 °С (или -40 °F) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Единицы и шкала измерения температуры

Шкала температур Кельвина

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.

Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F — 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.

Экстремальные условия космоса

Итак, по словам ученых, в открытом космосе температура равна -273,15 градусам Цельсия. Но это совершенно не значит, что все попадающие в космос объекты мгновенно обретают ту же температуру. Как и на поверхности нашей планеты, космические корабли, спутники и другие объекты могут нагреваться и охлаждаться, причем до экстремальных уровней. Но передача тепла в космосе возможна только одним способом.

Вообще, существует три способа передачи тепла:

  • проводимость, которую можно наблюдать при нагревании металлического стержня — если нагреть один конец, со временем горячей станет и противоположная часть;
  • конвекция, которую можно наблюдать, когда теплый воздух перемещается из одной комнаты в другую;
  • излучение, когда испускаемые космическими объектами элементарные частицы вроде фотонов (частиц света), электронов и протонов объединяются, образуя движущиеся частицы.

Как вы уже догадались, в космосе объекты нагреваются под воздействием активности элементарных частиц — ведь мы уже выяснили, что температура является результатом движений молекул? Фотоны и другие элементарные частицы могут излучаться Солнцем и другими космическими объектами.

Насколько сильно и быстро будут нагреваться или охлаждаться попавшие в космос объекты, напрямую зависит от их местоположения относительно звезд и планет, размеров, формы и так далее. Например, летящий в космосе космический корабль будет буквально раскален со стороны Солнца, а его теневая сторона будет очень холодной. Чем дальше корабль находится от небесного светила — тем сильнее будет разница в степени нагрева.

При строительстве космических кораблей важно учитывать экстремальные изменения температур

Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 260 градусов Цельсия. Теневая сторона, в свою очередь, охлаждена до 100 градусов Цельсия. Экипажу космической станции иногда приходится выходить на поверхность конструкции и подвергаться резким сменам температур. Поэтому их костюмы оснащены системой нагрева и охлаждения, благодаря которой исследователи космоса чувствуют себя относительно комфортно.

Чем дальше от Солнца расположены космические объекты, тем они холоднее. Например, температура на Плутоне, которая расположена очень далеко, равняется -240 градусам Цельсия. А самое холодное место во Вселенной расположено в туманности Бумеранг — температурный режим в этом регионе равен -272 градусам Цельсия.

В общем если вы когда-нибудь фантастическим образом окажетесь в открытом космосе, вам понадобится костюм, внутри которого температура будет регулироваться автоматически. Но резкие изменения температуры — не единственная проблема, которая будет вас поджидать. В космическом пространстве человеческое тело терпит много изменений, о которых можно почитать в этом материале.

Понятие абсолютного нуля

Абсолютный ноль температуры по сути понимание того, сколько энергии доступно от молекул газа в законе идеального газа.

Степень нагревания должна быть измерена в абсолютном масштабе (как Кельвин), чтобы закон идеального газа имел смысл. Идеальный газ – отсутствуют силы межмолекулярного воздействия. Кроме того, идея абсолютного нуля играет важную роль в физике излучения абсолютно черного тела (сколько энергии излучает объект при определенной температуре) и максимально возможный КПД теплового двигателя (так называемый КПД Карно).

Понятие абсолютный ноль температуры также является частью физики изменения климата.

Средняя температура Земли, которая составляет около 15°C, будет 288 K. Если парниковые газы увеличат температуру планеты на 1%, то она не поднимется на 0,15 градуса, она поднимется на 2,88 градуса. Кельвин и Цельсий имеют одинаковое приращение степени, но Кельвин-абсолютная шкала (что означает, что нулевая точка действительно равна нулю), а Цельсий — относительная шкала (нулевая точка произвольна — она была выбрана ученым). Вот почему температура будет увеличиваться на 2,88 градуса вместо 0,15 градуса

Понимание того, как эти небольшие процентные изменения температуры Земли могут привести к радикальным последствиям для планеты, является важной частью климатологии

Термодинамика показала, что добраться до абсолютного нуля температуры невозможно, но физики подобрались достаточно близко. Используя лазерное охлаждение и магнитную ловушку, экспериментально ученые смогли охладить атомы до температуры нескольких нK (10-9 K), чтобы сформировать конденсаты Бозе-Эйнштейна. В неидеальных условиях самая низкая возможная температура из-за воздействия звезд 2,725 градусов Кельвина,  -270,425 градусов Цельсия.

Температура — это показания термометра, который измеряет, насколько горячее или холодное вещество. На микроскопическом уровне она характеризует среднюю кинетическую энергию молекул внутри материала или системы. Это измеримое физическое свойство объекта и может рассматриваться с другими измеримыми физическими свойствами, такими как скорость, масса и плотность и т.п.

Важное недоразумение

Поскольку температура является мерой микроскопической энергии атомов (или молекул), она удваивается, если микроскопическая энергия удваивается. Тем не менее, переход от 10°C сегодня к 20°C завтра не удваивает температуру (хотя 20 дважды десять). Ученый сказал бы, что это 283 K, и вот где возникает проблема: удвоение 283 K составляет 566 K, что преобразуется в экстремальный 293°C. К счастью, 293°c при жизни людей не произойдет на Земле, но эта идея пропорционального изменения температуры привела к некоторой путанице с изменением климата.

Путаница в связи с изменением климата

Подавляющее большинство ученых согласны с тем, что изменение климата является одной из основных проблем, стоящих перед миром.

Большинство климатологов прогнозируют увеличение средней глобальной температуры на 1% к 2100 году. Это число звучит незначительно, если думать в градусах Цельсия, но изменение 1% означает, что должна использоваться шкала Кельвина. К сожалению, для того, чтобы сделать этот расчет, числа должны быть преобразованы в Кельвин и после выполнения надлежащих преобразований и расчетов увеличение на 1% по шкале Кельвина фактически приведет к средней глобальной температуре 17,4°C к 2100 году. Сейчас средняя нагретость Земли 14, 8 °C. Это может показаться не очень высоким, но увеличение 2.6°C довольно тревожно. При этом произойдет  повышение  уровня моря со всеми вытекающими последствиями для Земли.

Основные формулы термодинамики и молекулярной физики, которые Вам пригодятся

Основные формулы термодинамики и молекулярной физики, которые Вам пригодятся.
Вот он, еще один отличный день для практических занятий по физике. Сегодня, дорогие друзья, мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них

Изотермический – протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изохорный – протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изобарный – идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Взаимодействие атомов между собой

При
рассмотрении реальных
газов —

газов,
свойства которых зависят от взаи­модействия
молекул, надо учитывать силы
межмолекулярного взаимодействия.
Они

проявляются
на расстояниях 10-9
м и быстро убывают при увеличении
рассто­яния между молекулами. Такие
силы на­зываются короткодействующими.

В XX
в., по мере развития представле­ний о
строении атома и квантовой механи­ки,
было выяснено, что между молекулами
вещества одновременно действуют силы
притяжения и силы отталкивания.
На
рис. 88, априведена
качественная зависи­мость сил
межмолекулярного взаимодей­ствия от
расстояния r
между молекулами, где Fo
и Fп
соответственно силы оттал­кивания и
притяжения, aF
их результи­рующая. Силы отталкивания
считаются положительными,а
силы взаимного при­тяжения —отрицательными.

На
расстоянии r
=
rрезультирующая
сила F=0,
т. е. силы притяжения и оттал­кивания
уравновешивают друг друга. Та­ким
образом, расстояние rсоответствует
равновесному расстоянию между молеку­лами,
на котором бы они находились в от­сутствие
теплового движения. При r

преобладают
силы отталкивания (F>0),
при r>r
— силы притяжения (F10-9
м межмолекулярные силы взаимодействия
практически отсут­ствуют (F0).

Элементарная
работа A
силы Fпри
увеличении расстояния между молекула­ми
на drсовершается
за счет уменьше­ния взаимной
потенциальной энергии мо­лекул, т. е.

A=Fdr=-dП.
(60.1)

Из
анализа качественной зависимости
по­тенциальной энергии взаимодействия
мо­лекул от расстояния между ними
(рис. 88, б)следует,
что если молекулы находятся друг от
друга на расстоянии, на котором
межмолекулярные силы взаимо­действия
не действуют (г),
то П=0. При постепенном сближении молекул
между ними появляются силы притяжения
(F0).
Тогда, со­гласно (60.1), потенциальная
энергия вза­имодействия уменьшается,
достигая мини­мума при r=r.
При rrс
уменьшением rсилы
отталкивания (F>0)резко
воз­растают и совершаемая против них
работа отрицательна (A=FdrПотенци­альная
энергия начинает тоже резко воз­растать
и становится положительной. Из данной
потенциальной кривой следует, что
система из двух взаимодействующих
мо­лекул в состоянии устойчивого
равновесия (r=r)
обладает минимальной потенци­альной
энергией.

Критерием
различных агрегатных со­стояний
вещества является соотношение величин
Пmin
и kT.Пmin
— наименьшая потенциальная энергия
взаимодействия молекул — определяет
работу, которую нужно совершить против
сил притяже­ния для того, чтобы
разъединить моле­кулы, находящиеся
в равновесии (r=r);kTопределяет
удвоенную среднюю энер­гию, приходящуюся
на одну степень сво­боды хаотического
теплового движения молекул.

Если
Пmin0,т.
е. вероятность образования агрегатов
из молекул доста­точно мала. Если
IImin>>kT,
то вещество находится в твердом состоянии,
так как молекулы, притягиваясь друг к
другу, не могут удалиться на значительные
расстоя­ния и колеблются около
положений равно­весия, определяемого
r0.
Если ПminkT,то
вещество находится в жидком состоя­нии,
так как в результате теплового дви­жения
молекулы перемещаются в про­странстве,
обмениваясь местами, но не расходясь
на расстояние, превышающее r.Таким
образом, любое вещество в за­висимости
от температуры может нахо­диться в
газообразном, жидком или твер­дом
агрегатном состоянии, причем темпе­ратура
перехода из одного агрегатного состояния
в другое зависит от значения Пmin
для данного вещества. Например, у инертных
газов Пmin
мало, а у метал­лов — велико, поэтому
при обычных (ком­натных) температурах
они находятся со­ответственно в
газообразном и твердом со­стояниях.

Когда останавливаются молекулы и атомы?

В классическом рассмотрении вопроса при абсолютном нуле останавливается все, но именно в этот момент из-за угла выглядывает страшная морда квантовой механики. Одним из предсказаний квантовой механики, которое попортило кровь немалому количеству физиков, является то, что вы никогда не можете измерить точное положение или импульс частицы с совершенной определенностью. Это известно как принцип неопределенности Гейзенберга.

Если бы вы могли охладить герметичную комнату до абсолютного нуля, произошли бы странные вещи (об этом чуть позже). Давление воздуха упало бы практически до нуля, и поскольку давление воздуха обычно противостоит гравитации, воздух сколлапсирует в очень тонкий слой на полу.

Но даже в этом случае, если вы сможете измерить отдельные молекулы, вы обнаружите кое-что любопытное: они вибрируют и вращаются, совсем немного — квантовая неопределенность в работе. Чтобы поставить точки над i: если вы измерите вращение молекул углекислого газа при абсолютном нуле, вы обнаружите, что атомы кислорода облетают углерод со скоростью несколько километров в час — куда быстрее, чем вы предполагали.

Разговор заходит в тупик. Когда мы говорим о квантовом мире, движение теряет смысл. В таких масштабах все определяется неопределенностью, поэтому не то чтобы частицы были неподвижными, вы просто никогда не сможете измерить их так, словно они неподвижны.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Определение 2

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

Допустим, два теплоизолированных тела приведены в тепловой контакт. Одно тело передаст другому поток энергии: запустится процесс теплопередачи. При этом тело, отдающее тепло, обладает соответственно большей температурой, чем тело, «принимающее» поток тепла. Очевидно, что через некоторое время процесс теплопередачи остановится и наступит тепловое равновесие: предполагается, что температуры тел выравниваются относительно друга, их значения будут находиться где-то в интервале между исходными значениями температур. Таким образом, температура служит некоторой меткой теплового равновесия. Получается, что любая величина t, удовлетворяющая требованиям:

  1. t1>t2, когда происходит теплопередача от первого тела ко второму;
  2. t1’=t2’=t, t1>t>t2, при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Определение 3

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур

Определение 4

Температурная шкала – это способ деления на части интервала температуры.

Разберем пример.

Пример 1

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2, указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1).

Рисунок 1

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные «термические тела» (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Из вышесказанного можно сделать вывод, что понятие температуры, базирующееся на законах теплового равновесия, неоднозначно. Подобная температура является эмпирической, зависит от способа измерения. За «нуль» шкалы эмпирической температуры принимается произвольная точка. Согласно определению эмпирической температуры, физический смысл несет лишь разность температур или ее изменение. Любая эмпирическая температурная шкала приводится в вид термодинамической температурной шкалы при использовании поправок, которые учтут характер связи термометрического свойства с термодинамической температурой.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание